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Abstract
Handlingwireless capsule endoscopy (WCE) de-redundancy is a challenging task. This paper
proposes a scheme, called SS-VCF-Der, to consider applying a flow field estimation between
two successive WCE frames to WCE imaging motion analysis and then address the WCE
de-redundancy problem based on the results of the motion analysis.To this end, we intend to
exploit a self-supervised technique to learn interframe visual correspondence representations
from large amounts of raw WCE videos without manual human supervision, and predict the
flow field. Our key idea is to use the natural spatial-temporal coherence in color and cycle
consistency in time inWCE videos as free supervisory signal to learnWCE visual correspon-
dence relations from scratch. We call this procedure self-supervised visual correspondence
flow learning (SS-VCF). At training time, we use three losses: forward-backward cycle-
consistency loss, visual similarity loss, and color loss, to train and optimize model. At test
time, we use the acquired representation to generate a flow field for analyzing pixel move-
ment between two successive WCE frames. Furthermore, according to the resulting flow
field estimation, we compute the motion intensity of motion fields between two successive
frames, and use our proposed de-redundancy method, namely SS-VCF-MI, to select some
frames as key ones with distinct scene changes in local neighborhood so as to achieve the
purpose of de-redundancy. Extensive experiments on our collectedWCE-2019-Video dataset
show that our scheme can achieve a promising result, verifying its effectiveness on the visual
correspondence representation and redundancy removal for WCE videos.

Keywords Wireless capsule endoscopy · Self-supervised learning · Correspondence
matching · Flow estimation · Motion intensity · Redundancy removal

B Chunxiao Ye
yecx@cqu.edu.cn

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15530-7&domain=pdf
http://orcid.org/0000-0002-6736-1025


Multimedia Tools and Applications

1 Introduction

Wireless capsule endoscopy (WCE) is the preferred unparalleled modality for diagnosis and
assessment of small bowel diseases due to its many advantages, particularly its painless and
noninvasive inspection [22]. However, during one WCE procedure, amounts of images with
high similarity are generated, and only a small percentage of video data is useful for diagnosis.
Manually reviewing these WCE frames is time-consuming and hard for an experienced
clinician, and does not guarantee that some important abnormal information is not missed
[3, 29, 54]. Although more recently, magnetic actuation and localization technology has
also been developed to accelerate and locate the wireless capsule endoscopy in the human
digestive tract [37, 62], this technique does not change the fact that WCE produces large
amounts of similar redundant frames for a patient in one examination. Thus, it is extremely
needed to explore new computational methods that can help clinician reduce the time spent
in the examination.

Much work has been devoted to reducing redundancy and reviewing time [20], These
methods used in these work include non-negative matrix factorization (NMF) [21], factor-
ization analysis based on sliding window singular value decomposition (SVD) [4], video
summarization [16, 40, 55, 63], feature representation [4, 6, 12, 35], image registration [14,
15, 26, 36, 57], similarity [1, 51], as well as motion analysis [33, 39, 43, 58] most related
to our work. But these methods almost not attempt to use deep learning to benefit the de-
redundancy problem [11], except for work [4, 6, 36, 58] that uses deep learning techniques to
feature extraction. With respect to more work about reducing redundancy, readers can refer
to the related review literature [25, 50].

Recently, using convolutional neural networks (CNNs) to find correspondences and to
resolve optical flow estimation problem between two input images [10, 23, 60] in natural
scene, has attracted more and more attention. In this paper, we introduce this idea into
our WCE imaging motion analysis. We focus on the problem of how to establish visual
correspondences for WCE video representations depicting the movement relations between
two or more frames.Our key idea is that we can obtain unlimited supervision for the visual
correspondence representations from large amounts of unlabeled raw WCE video data by
using natural spatial-temporal coherence in color and cycle consistency in time in WCE
videos as pretext task, as shown in Fig. 1 (bottom). Our main aim is that after learning this
representation, this model can be used to compute coordinate-wise correspondences and to
generate a flowfield between two successiveWCE frames. The resulting flowfield estimation
can be then used to our WCE de-redundancy scheme so as to achieve the task of redundancy
removal.

However, it is a challenging task for learning representations for visual correspondence
from the rawWCE video due to the non-rigid deformations and poor structural motion infor-
mation, aswell as low-texture context inWCEvideo.Meanwhile, with respect toWCEvideo,
collecting the large-scale ground truth datasets necessary for high performance of learning
visual correspondences, often requires extensive effort that is extremely expensive and even
impractical. Furthermore, directly getting optical flow ground-truth labels for realistic video
material, particularly for WCE video is known to be extremely difficult [5]. So, attempting
to evaluate whether there is a scene change between two WCE frames based on a ground
truth dataset in a supervised way, is almost infeasible, as shown in Fig. 1 (top). Moreover,
some techniques employing handcrafted features such as SIFT [46] or HOG [7] have been
successfully applied to dense semantic correspondence in natural scene. However, they may
be limited in effectiveness for WCE video scene. That is mainly due to the fact that there exit
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Loss

Fig. 1 The comparison between supervised and self-supervised learning. Learning visual correspondences
via supervised learning requires ground-truth labels for every frame of the training videos. By utilizing the
forward-backward cycle-consistency loss in the feature space and color loss in the Lab color space, we train an
encoder chaining correspondence in each successive frame. Top: Supervised training. Bottom: Self-supervised
training

some inherent limitations inWCE video [39, 41, 43], such as complicated and chaotic motion
of the camera itself, no distinct foreground and background, and non-rigid deformation (local
nonrigid motion) of gastrointestinal (GI) tract.

All these problems motivate us to propose a new self-supervised method1 that can
generate a flow field for pixel motion from the correspondences in each successive frame
based on raw unlabeled WCE video itself, and then this flow field estimation can be applied
to the WCE imaging motion analysis which is further considered applying to the WCE de-
redundancy problem. We believe that correspondence flow is a crucial and suitable feature
for the analysis of WCE scene changes based on the following experimental results.

In this paper, we propose a visual correspondence flow learning framework for the WCE
visual correspondence representations which is trained in a self-supervised manner, referred
to as visual correspondence flow learning (SS-VCF), that learns representations by finding
these correspondences between successive frames and turn them into a learning signal. This
representation can be future used to tackle the problem of redundancy elimination. Our work
is inspired by the recent success of using correspondence learning to video representations
in natural scene [13, 30, 44, 60]. The main objective of these work is to learn a representation
for visual correspondence from raw video, in a self-supervised fashion, and some of them
[30, 60] apply the learned representation to flow field estimation. Our work is also inspired
by the innovative approach of [32, 59, 65] where colorization is used as a pretext task for
learning in a self-supervised way. Common to all the above work is that these models are
trained in a self-supervised manner to learn correspondences between observations adjacent
in time, and thus our model is also trained in the same manner.

1 We do not distinguish between the term unsupervised and self-supervised, as both refer to learning without
human supervision. But in this paper,we use the termof self-supervised learning forWCEvideo representation.
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Since our work aims to achieve the task of WCE de-redundancy, we refer to the related
literatures [33, 39, 41, 43, 56, 58] involving motion analysis applied to WCE de-redundancy,
and then divide our whole scheme called SS-VCF-Der into three main procedures. i) We
learn visual correspondence representations from large amounts of raw WCE videos, in a
self-supervised manner. We name the procedure self-supervised visual correspondence flow
learning (SS-VCF); ii) We use this learned model to compute coordinate-wise correspon-
dences and generate a flow field estimation between two successive WCE frames, which
is then used to WCE imaging motion analysis; iii) We measure and analyze the degree or
intensity of scene change in each successive frame by using motion intensity (MI) of the
acquired motion estimation, and then adopt our proposed de-redundancy method, namely
SS-VCF-MI, to decide whether there is a scene change between two successive frames and
to select some frames as key ones with obvious scene changes. After all the three steps,
we obtain the result of de-redundancy in WCE video, consisting of all the key frames. The
framework of our de-redundancy scheme is presented in Fig. 2.

Quantitative and qualitative evaluations on ourWCE-2019-Video dataset demonstrate that
our proposed scheme is effective, and it can achieve the results on par with or even better
than the other latest methods.

In summary, the main contributions in this paper are given as follows:

1. We first tentatively use a self-supervised method to learn visual correspondence rep-
resentations between successive frames in WCE video. We further apply the learned
representations to compute coordinate-wise correspondences and generate a flow field for
pixel movement. According to the resulting flow field estimation, we compute motion
intensity of motion fields between two successive frames as motion features. And then we
use the extracted motion features to our proposed de-redundancy scheme so as to achieve
the purpose of de-redundancy.

2. Based on the acquired motion features, we proposed a de-redundancy method to select
some frames as key ones with distinct scene changes in local neighborhood. Whether
there is a scene change between two successive frames will be determined by setting a
local maximum value satisfying some conditions.

3. We have conducted extensive comparative studies on our WCE-2019-Video dataset. The
experiments consist of twoparts. Thefirst part confirms that the proposedSS-VCFmodel is
suitable for flow field estimation in WCE video, and the second verifies that our proposed
SS-VCF-MI method is effective for WCE redundancy removal. With respective to the
two experiments, we evaluate the performance of the method in each experiment based
on different evaluation metrics from both quantitative and qualitative perspectives.

The remainder of this paper is organized as follows. Section 2 reviews priorwork. Section 3
specifies our whole scheme, including training process for WCE video representations and
de-redundancy approach. Section 4 gives experimental details and results under both the
learned representation and de-redundancy approach, and compares with other methods, and
finally Section 5 presents our conclusion.

WCE video sequence

Learned 

SS-VCF 

model

Key frames 

selection using 

SS-VCF-MI

Motion 

intensity 

computation

Step1 Key frames sequenceStep2 Step3

Fig. 2 The workflow of our entire de-redundancy scheme
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2 Related work

In this section, we perform a literature review, covering the following several aspects: i)
correspondence matching, ii) optical flow, iii) self-supervised representation learning, iv)
related techniques applied to WCE redundancy removal.

Correspondence matching Earlier much work mainly focused on estimating correspon-
dences for a pair of images including the same scene or object by using hand-crafted features
such as SIFT [46] or HOG [7]. Recently, many researchers have studied the task of corre-
spondence matching in natural scenes using deep CNNs [17, 27, 30, 38, 53, 60]. But different
from the work from Rocco et al. [53] which trains CNNs by learning from synthetic trans-
formations in natural scenes, we learn correspondence matching by exploiting the inherent
spatial-temporal coherence in realistic medical WCE video data itself instead of synthetic
training data.

Optical flow The conventional variational approaches have dominated optical flow estima-
tion. Since the energy minimization framework of Horn and Schunck [19] and coarse-to-fine
image warping by Lucas and Kanade [47], much success has been made in optical flow
estimation. Recently, CNNs have been applied to solving optical flow estimation problem
[10, 23, 34] in natural scenes. We introduce similar techniques [30, 60] into our task of WCE
imaging motion analysis. We use CNN to learn the flow estimation from WCE video itself
by considering the natural spatial-temporal coherence of time and color in each successive
frame.

Self-supervised representation learning from video Our framework closely relates to the
self-supervised representation learning. Learning representations from video using various
pretext tasks as supervision has been proposed. Some pretext tasks involve colorization
[59], cycle-consistency in time [49, 60], or form pseudo-labels by Siamese correlation fil-
ter network [61]. Our work is inspired by the colorization, cycle-consistency in time, and
pseudo-labels, all of which can be used to provide supervisory signal for training. Following
the above three work, we use the natural spatial-temporal coherence of time and color in
WCE videos as a pretext task and integrate the representation learning and the tracker into a
self-supervised training procedure, in an end-to-end fashion.

Related techniques applied to endoscopy video de-redundancy Various related techniques
applied to WCE video de-redundancy have been extensively studied. Some optical flow-
based approaches have been explored to reduce the redundancy and reviewing time [33, 39,
43, 56]. Also, there are other methods, e.g., video summarization techniques [16, 40, 55,
63] used to the de-redundancy problem. In these methods, optical flow-based approaches
are most related to ours. However, these methods almost not benefit from deep learning
techniques, particularly CNNs. Our method learns visual correspondence representations in
a self-supervised manner by using a CNN architecture, and generates the flow field in each
successive frame. To the best of our knowledge, there is still no related work applying this
similar approach of visual correspondence learning to WCE video de-redundancy. Our work
should be the first attempting to apply it to the problem of WCE redundancy elimination.

3 Methods

In this section, we will elaborate on our de-redundancy scheme from the following three
respects: i) What is the SS-VCF model and how to train it; ii) How to extract motion features
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Table 1 Some abbreviations with the corresponding full names (a)

(a) list of abbreviations

Abbr. Full Name Abbr. Full Name

WCE Wireless capsule endoscopy MI Motion intensity

CNN Convolutional neural network GI Gastrointestinal

(b) list of notations

Symbol Description Symbol Description

T Differentiable tracker φ Spatial feature encoder

I Image p Image patch

f Affinity function A Affinity matrix

g Localizer h Bilinear Sample

L Loss function λ Balance parameter

θ Localization parameter x Spatial feature

The notations used in our method and corresponding descriptions (b)

between two successive WCE frames using the SS-VCF model; iii) How to analyze the
scene changes and select key frames via extracted motion features. Here we also list some
abbreviations with the corresponding full names across the full paper, as well as a concise
reference describing the notation used throughout our method in Table 1.

3.1 SS-VCFmodel

We first give the description of our model, and then show how to train our model for visual
correspondence representation inWCE video. Finally, we give some implementation details.

3.1.1 Overview of our model

We take the design of TimeCycle [60] as the baseline. Our SS-VCF model consists of a
spatial feature encoder φ and a differentiable tracker T . The spatial feature encoder can be
any form of CNN architecture, and the differentiable tracker is a spatial transformer network
[24], performing co-localisation task. In this paper, we follow [60] and adopt a same ResNet-
50 architecture [18] as the spatial feature encoder φ. The differentiable tracker T can be
inserted into the bottom of φ. We take one cycle in time as example to give an illustration of
the training procedure, as shown in Fig. 3.

Similarly to [60], our goal is to learn a feature space φ by tracking a patch pt extracted
from image It forwards and then backwards in time, while minimizing three losses: cycle-
consistency loss Lcycle, similarity loss Lsim , and color loss Lcolor , where Lsim and Lcolor

include two losses in both forward and backward paths, respectively. The cycle-consistency
loss Lcycle is the euclidean distance between the spatial coordinates of initial patch pt and
the patch p̂t found at the end of the cycle in It . The similarity loss Lsim explicitly require the
current patch pt and target patch pt+1, as well as pt and p̂t , to be similar in the feature space,
which amounts to the negative Frobenius inner product between spatial feature tensors pt
and pt+1, as well as pt and p̂t . The color loss is the cross-entropy categorical loss in the Lab
space between the current patch pt and and target patch pt+1, and between current patch pt
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Fig. 3 The overview of SS-VCF model. Note that color loss is performed in Lab color space

and the patch p̂t found at the end of the cycle in It . We learn an optimal feature space φ by
minimizing the sum of three losses.

Training φ relies on a differentiable tracking operation T , which takes as inputs the
features of a current patch pt and a target image It+1, and returns the image feature region
with maximum similarity and minimum color loss. The implementation of T is shown in the
green dotted-line box of Fig. 3. T must match features to localize the next patch and can be
iteratively applied forwards and then backwards through time to track along an arbitrarily
long cycle. It consists of three main components: affinity function f , localizer g, and and
bilinear sampler h, which draws from the work by Wang et al. [60]. Here, we briefly review
it.

Affinity function f provides a measure of similarity between coordinates of spatial features
x I and x p , where x I=φ(I ) and x p=φ(p).We define the affinity function as f (x I , x p) := A,
and denote spatial grid j in feature x I as x I ( j) and the grid i in x p as x p(i), such that

A( j, i) = exp(x I ( j)Tx p(i))
∑

j exp(x
I ( j)Tx p(i))

, (1)

where the similarity A( j, i) is normalized by the softmax over the spatial dimension of x I ,
for each x p .

Localizer g takes affinity matrix A as input and estimates localization parameters θ corre-
sponding to the patch in feature x I which bestmatches x p . g is composed of two convolutional
layers and one linear layer which regresses to the θ parameters, and it is restricted to output
3 parameters for the bilinear sampling grid, corresponding to 2D translation and rotation:
g(A) := θ .

Bilinear sampler h uses the image feature x I and θ predicted by g to perform bilinear
sampling to produce a new patch feature h(x I , θ) which is the same size as x p .

3.1.2 Training loss

Given a sequence of video frames It :t+k and a patch pt taken from It , as well as their
corresponding spatial features: x It :t+k = φ(It :t+k) and x p

t = φ(pt ), where k denotes the

123



Multimedia Tools and Applications

number of forward frames. Let T be a differentiable operation x Is × x p
t �→ x p

s , where s and
t represent time steps. The role of T is to localize the patch features x p

s in image features x Is
that are most similar to x p

t . We formulate the forward-backward cycle-consistency tracking
as an iterative process below in a forward manner i times from t+1 to t+ i and in a backward
manner i times from t + i to t + 1, respectively:

T (i)(x It+i , x
p)=T (x It+i , T (x It+i−1, ...T (x It+1, x

p))), (2)

T (−i)(x It+1, x
p) = T (x It+1, T (x It+2, ...T (x It+i , x

p))). (3)

Based on the above formulation, similarly to [60], we give the following loss functions to
train the SS-VCF model: i) cycle-consistency loss Lcycle; ii) feature similarity loss Lsim ; iii)
color loss Lcolor , as illustrated in the blue dotted-line box of Fig. 3.

Cycle-consistency loss Li
cycle. The cycle-consistency loss Li

cycle is defined as:

Li
cycle=lθ (x

p
t , T (−i)(x It+1, T (i)(x It+i , x

p
t ))). (4)

The tracker attempts to follow features forward and then backward steps i in time to re-arrive
to the initial patch. lθ is Euclidean distance between them.

Feature similarity loss Li
sim We explicitly require the current patch T (i)(x It+i−1, x

p
t ) and

localized patch T (i)(x It+i , x
p
t ) in the forward path, as well as current patch

T (−i)(x It+1, T (i)(x It+i , x
p
t )) and localized patch T (−i)(x It+1, T (i)(x It+i−1, x

p
t )) in the back-

ward path, to be similar in feature space. This loss amounts to the sum of negative Frobenius
inner product between spatial feature tensors in both the forward and backward paths:

Li
sim=Li

sim+L(−i)
sim = − (< T (i)(x It+i−1, x

p
t ), T (i)(x It+i , x

p
t ) >

+ < T (−i)(x It+1, T (i)(x It+i , x
p
t )), T (−i)(x It+1, T (i)(x It+i−1, x

p
t )) >)

. (5)

Color loss Li
color Similarly to [59], we cast frame reconstruction as a classification problem.

The color for each pixel is quantized into 16 classes with K-means clustering in the Lab
space. The objective function is defined as:

Li
color=α1

i∑

m=1

L1(Im, Îm)+α2

1∑

n=i

L2(In, În), (6)

whereL1 andL2 refer to the pixel-wise cross entropy between current patch and reconstructed
patch in the forward and backward paths, and the loss weights are set as α1=0.8 and α2=0.2,
respectively in all our experiments. Also, the predicted colors in It+1 are viewed as a linear
combination of colors in the past frame:

It+1 =
∑

t

A(t,t+1) It . (7)

Overall loss L The overall learning objective sums over the k possible cycles, with weight
λ1=0.8 and λ2=0.5:

L=
k∑

i=1

Li
sim + λ1Li

cycle + λ2Li
color . (8)
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Training SS-VCF The combination of φ and T forms a forward-backward cycle tacker,
allowing for end-to-end training:

x I , x p = φ(I ), φ(p), (9)

T (x I , x p) = h(x I , g( f (x I , x p))). (10)

This training procedure can be described in Algorithm 1.

Algorithm 1 Training SS-VCF model.
Input: Video frame sequences It :t+k and a patch pt taken from It , CNN model encoder φ, differentiable

tracker T
Output: Learned model φ, T
1: for training epochs do
2: % Map to feature space
3: x It+i , x

p
t = φ(It+i ), φ(pt )

4: % Compute loss according to (4), (5), (6), and (8).

5: L=
k∑

i=1
Li
sim + λ1Li

cycle + λ2Li
color

6: % Update model
7: φ = update(φ, ∂L

∂φ
)

8: T = update(T , ∂L
∂T )

9: end for

3.1.3 Implementation details

Training We train the model without using any annotations or pre-training on the WCE-
2019-Video dataset containing 102,346 frames.We evaluate our model onWCE-2019-Video
dataset from the quantitative and qualitative perspectives respectively, verifying its effective-
ness on learning visual correspondence representations in WCE video. During training, we
set the temporal length as k = 4. We train our SS-VCF model with 30 epochs on an Nvidia
TitanXp graphics card using Adam [28] optimizer whose learning rates and batch size are
set to 2e-4 and 16, respectively. We implement our approach using pytorch [52].

Inference At test time, based on (1), we apply the learned representations to compute
coordinate-wise correspondences and generate a flow field for pixel movement.

3.2 Scene changes analysis

The literature [43] simultaneously considers the movement of WCE camera and gastroin-
testinal tract to model the WCE imaging motion, which it seems to be more complicated to
clinical practice, since it is difficult to predict the motion orientation of WCE camera. In this
paper, according to the inherent properties of WCE video itself, such as chaotic motion of
WCE camera, non-rigid deformation of GI tract, and low-texture context of WCE image, we
directly model the WCE video motion and analyze scene changes between two successive
WCE video frames from It to It+1 in a WCE video. In order to analyze scene changes,
we first estimate the temporal motion field between both using the above learned SS-VCF
model. Sincemotion intensity (MI) (viz.magnitude) has power to describe inter-framemotion
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1           2           3           4           5

WCE video sequence

n-1        n-2

Motion intensity matrix sequence

Flow field (color coding) sequence

Motion intensity sequence

Fig. 4 An illustration of this idea using MI to WCE video scene changes analysis

[8, 45], we compute the motion intensity of motion field between two successive frames as
motion features to decide whether scene change occur by using the definition in [8, 9, 19].
We adapted the definition to our experiments, which is presented as follows:

MI = 1

MN

M−1∑

k=0

N−1∑

l=0

√

(Uk,l
2+Vk,l2), (11)

where U and V are the horizontal and vertical vectors in flow field matrix, respectively. M
and N are the width and height of flow field matrix, respectively. (k, l) indicates the indices
of flow field matrix.

√
U 2+V 2 denotes motion intensity matrix corresponding to one flow

field matrix. These MI values form one-dimensional signal in the time domain, which is
convenient to analyze some fluctuations along the one-dimensional signal. This idea ofWCE
video scene changes analysis using MI is illustrated in Fig. 4.

3.3 WCE de-redundancy process

An initial approach extracting key frames was to choose the first frame of a segment (or
shot) as the key-frame. The same kind of method was also used in [43]. It is a reasonable
approach and works well for low-motion or stable-motion shots in natural scenes. However,
for endoscopy video, selecting the first frame as a key-frame may be not appliable. Similarly
to [39, 41], we also adopt a peak value along the curve of motion intensity (MI) to decide
whether a large motion occurs between two successive frames, which indicates that there
are some significant scene changes between both of the two frames. We select one of two
frames adjacent in the peak value as the key-frames to accomplish the process of redundancy
removal. Since the peak value is a local activity in the time domain, it is more suitable for
deciding whether there is a scene change between two successive frames by setting a local
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threshold. So, following [39, 41], we can claim a local maximum as the peak value to decide
whether a large motion occurs, and further to consider selecting these frames adjacent in
the peak value as key-frames. The local maximum from It to It+1 satisfies the following
conditions: (i) The local value is the maximum in a symmetric neighbor of size 2m − 1, and
(ii) The local maximum is also n times of the second largest value in the neighbor. We set
the size of symmetric neighbor to 3, i.e.,m = 2, and times as n = 1.5 in all our experiments.
The whole extraction procedure of key-frames in a segment can be described in algorithm 2.

Algorithm 2 The procedure of our de-redundancy scheme SS-VCF-Der
Input: A WCE video sequence
1: Train the SS-VCF model.
2: Compute coordinate-wise correspondences between two successive frames by the learned SS-VCF model.
3: Generate a flow field for pixel movement between It and It+1.
4: Calculate the motion intensity (MI) according to the flow field generated in step 3.
5: Find peak values according to the conditions of local maximum in main text.
6: Decide which frames are selected as key frames.
7: Generate a short summary.
Output: A summarized sequence consisting of a set of key frames from input sequence

4 Results and discussion

The goal of our work is to process WCE video sequences that contain high redundancy. Our
entire experiment consists of two parts. The first part checks whether the proposed SS-VCF
model is suitable for flow field estimation ofWCE video, and the second part verifies whether
our proposed SS-VCF-MI method is effective on the de-redundancy of WCE video.

In the first experiment, i.e., the experiment of modeling the visual correspondence repre-
sentation (SS-VCF) inWCEvideo, we conduct a set of experiments on ourWCE-2019-Video
dataset from both quantitative and qualitative aspects respectively, and compare our method
with other approaches. In this experiment, we consider reconstruction error used in [60] as
a main evaluation metric to evaluate the performance of SS-VCF model and others. Also,
we use F-score and compression ratio (CR) as metric to reflect the representation capability
of the generated flow field as motion feature. These metrics are commonly used for video
summarization [48, 64]. Based on these metrics, we report our quantitative results. Further-
more, we also report our qualitative results via two visualizing results: flow flied between
two succussive frames, and warping results with this generated flow.

In the second one, i.e., the experiment of de-redundancy (SS-VCF-MI), we also give the
quantitative and qualitative results. We use F-score and compression ratio as the principal
criterion tomeasure the de-redundancy performance, which arewidely usedmetrics for video
summarization. We compare the performance of our de-redundancy scheme: SS-VCF-Der
with other methods on our WCE-2019-Video dataset. For the definitions of F-score and
compression ratio, please refer to related literatures [48, 58, 64].

4.1 Datasets

WCE-2019-Video dataset is specially collected for the task of WCE video summarization
in 2019, with frame-level importance scores. Our built WCE-2019-Video dataset contains 5
categories and 30 videos (6 per category from 6 patients) collected at the first phase of the
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task, and other two videos (corresponding 2 categories from the seventh patient) collected at
the second phase, totaling 32 videos and 102,346 frames. Each video varies from 600 to 7500
frames. We use these videos from patient ID #3–#7 in WCE-2019-Video dataset, totaling 22
videos with 69,843 frames as training set, and the remaining videos from patient ID #1–#2,
totaling 10 videos with 32,503 frames as testing set for evaluating our SS-VCF model and
de-redundancy scheme.

The learned representation is evaluated without fine-tuning on our WCE-2019-Video
dataset. Since getting optical flow ground truth for such a large-scale dataset is impossible,
we did not annotate this dataset for our task of visual correspondence learning, but the frame-
level importance scores of each video in WCE-2019-Video dataset have been annotated by
6 experienced clinicians. So, except for the metric of reconstruction error, we also use the
F-score and compression ratio to implicitly reflect the representation capability of SS-VCF
model.

4.2 Baseline

We compare with the following baselines:

Optical Flow(HS [19]) We use standard optical flow of Horn and Schunck (HS) to compute
flow field between two consecutive WCE frames It and It+1. The optical flow estimation
is viewed as an energy minimization problem based on brightness constancy and spatial
smoothness. We then use this resulting flow field to compute the motion intensity between
them. Also, we warp it on It to generate a new frame I ′

t , which is used to the intuitive
comparison of visualization and to computing quantitative result of reconstruction error.

SIFT Flow [42] For a reference frame It , we compute the SIFT flow between frames It and
its following frames It+1 from SIFT images of the two frames via an objective function. The
objective function for SIFT flow aims to finding a best match. We then use this resulting
flow flied to compute the corresponding motion intensity and further analyze the motion
information between two frames, as well as visualize the warping results.

Video Colorization [59] A self-supervised approach using color as a supervisory signal to
learn visual representations onWCE-2019-Video dataset from scratch. But the architecture of
this method is 3D ResNet-18. We use the same settings from the published papers to train the
colorizationmodel, andmake good use of it to compute the flow field between two successive
frames, and then analyze the motion information. Finally, we report our experimental results.

TimeCycle [60] A self-supervised method which use cycle-consistency in time as free
supervisory signal to learn visual representations from scratch. We use the learned visual
representations to compute coordinate-wise correspondences and generate a flow field for
pixel movement from frame It to It+1. We resize the flow field to the same size as the frame
It by bilinear interpolation, and warp it to generate a new frame I ′

t . We then report the
reconstruction error between them and visualize the warping results.

Correspondence Flow (CorrFlow [30]) It is also a self-supervised method using the combi-
nation of variousmethods, such as color dropout, restricted attention, scheduled sampling and
cycle consistency. We adopt its open-source implementation to our experiments on WCE-
2019-Video dataset, and use the trained model to generate a flow field, and compute the
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motion intensity and illustrate the visualization of warping results between two consecutive
frames It and It+1.

BAME-SIFTFlow [43] An invalid region is defined for a robust measurement of scene
changes between two successive WCE frames. Meanwhile, a reduction scheme is designed
to select key frames according to the method of setting both the first frame as key frame
and the threshold of the diameter of the max-inscribed circle (DMC) of the defined invalid
region. We compared the performance of both our de-redundancy scheme and theirs on
WCE-2019-Video dataset.

4.3 Ablation analysis

We conducted several ablation studies to analyze the contribution of each component of the
SS-VCF model by removing one component at a time. Ablation experiments are performed
on ourWCE-2019-Video dataset. We adopt reconstruction error used in [60] as an evaluation
metric, which is also used as quantitative evaluation metric in our first experiment. All
models are trained from scratch without fine-tuning on our training set from WCE-2019-
Video dataset, and evaluated on the testing set. More concretely, we generate the optical flow
between two successive frames andwarp the first one It with this resulting flow to a new frame
I ′
t , and then compute reconstruction error between the warped frame I ′

t and second frame
It+1 by using L1 distance. The reconstruction error is an average value on our testing set
from WCE-2019-Video dataset, which is statistically meaningful. Quantitative comparisons
of ablation studies are shown in Table 2. Depending on which training loss is adopted, we
consider the following ablation variants of SS-VCF.

SS-VCFw/o-cycle This variant indicates that the strategy of cycle-consistency Lcycle is not
adopted. This variant uses the loss of feature similarity Lsim and the color loss Lcolor to
train model. It is used to verify the effects of cycle-consistency to the capability of visual
correspondence representation learning. This case is equivalent to adding a loss of feature
similarity Lsim to colorization model [59] which uses a pointer mechanism to reconstruct
a target frame I ′

t+1 by copying pixels from a reference frame It . The colorization model is
trained such that the predicted colors in I ′

t+1 are close to the true target colors in It+1.

SS-VCFw/o-sim The variant denotes that the loss of feature similarity Lsim is not included,
which is explicitly required in our SS-VCF model. This variant uses the cycle-consistency
loss Lcycle and the color loss Lcolor to train model. It is used to verify the effects of the loss

Table 2 Performance
comparisons on reconstruction
errors of SS-VCF model and its
ablation variants on
WCE-2019-Video dataset for two
gaps

Method 1-F 5-F

SS-VCFw/o−cycle 38.6 57.6

SS-VCFw/o−sim 39.2 58.1

SS-VCFw/o−color 38.7 56.3

SS-VCF 31.2 46.2

The gaps are 1 or 5 frames. The lower the reconstruction error, the better
the performance
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of feature similarity Lsim to the capability of visual correspondence representation learning.
This case is similar to CorrFlow model [30].

SS-VCFw/o-color This variant indicates that the color loss Lcolor is not adopted. This variant
uses the cycle-consistency loss Lcycle and the loss of feature similarity Lsim to train model.
It is used to verify the effects of colorization to the capability of visual correspondence
representation learning. This case is similar to TimeCycle model [60], but without the loss
of skip cycle.

SS-VCF In this case, the overall loss function L is the final objective for training the SS-
VCF model in a self-supervised manner. We show that SS-VCF can yield best results when
combined with all the unsupervised losses above.

Comparing reconstruction error of SS-VCFw/o−cycle with SS-VCFw/o−sim in Table 2,
it can be seen from Table 2 that the performance of SS-VCF model without the loss of
cycle-consistency Lcycle all outperforms that of SS-VCF model without the loss of feature
similarity Lsim on both two gaps. This indicates that the loss of feature similarity Lsim than
the loss of cycle-consistency Lcycle is more benefit to the reconstruction.

Also, one can see that the performance of SS-VCF model without the color loss Lcolor

outperforms that of SS-VCF model without the loss of feature similarity Lsim on both two
gaps. This indicates that the color loss Lcolor than the loss of feature similarity Lsim makes
more contributions on improving the performance of the reconstruction.

Additionally, as one can see, the performance of SS-VCF model without the loss of
cycle-consistency Lcycle outperforms that of SS-VCF model without the color loss Lcolor on
1-frame gap, but not on 5-frame gap. This indicates that the loss of cycle-consistency Lcycle

may be helpful for long-range correspondence representation leaning. Furthermore, we also
notice that the performances of both them on 1-frame gap are almost the same. This shows
that they have almost identical ability for correspondence representation between two frames
adjacent in time.

Finally, the performance of SS-VCF model is the best. This shows that the SS-VCF
combining with all the unsupervised losses can yield best the performance of visual corre-
spondence representation learning.

4.4 Quantitative results

4.4.1 Experimental comparisons of SS-VCF and other methods

Since our approachmainly aims to self-supervised learning, we compare our learned SS-VCF
model with the other five non-supervised methods: Optical Flow (HS [19]), SIFT Flow [42],
Video colorization model [59], TimeCycle [60], and CorrFlow [30] on ourWCE-2019-Video
dataset. Note that here all methods use the same settings from their published papers, some
of which are slightly different from the variants of ablation analysis in Section 4.2. After
learning, for given two frames It and It+1 adjacent in time in a WCE video, we compute
coordinate-wise correspondences under each acquired model, and generate a flow field for
per-pixel movement between them.We then warp the flow field on frame It to generate a new
image I ′

t similar to It+1. Following [60],we compare theL1distance (viz.Manhattandistance,
a.k.a., CityBlock distance) between I ′

t and It+1 in RGB space and report the reconstruction
errors in Table 3.
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Table 3 Performance
comparisons on reconstruction
errors of various models on
WCE-2019-Video dataset for
both two gaps

Method 1-F 5-F

Optical Flow (HS [19]) 41.2 65.2

SIFT Flow [42] 39.3 60.5

Video Colorization [59] 39.2 58.7

TimeCycle [60] 38.7 56.3

CorrFlow [30] 39.5 59.1

SS-VCF 31.2 46.2

The two gaps are 1 frame or 5 frames

We use two gaps: 1-frame and 5-frame in this paper, to show and compare the perfor-
mance of each model. The reconstruction error is an average value on our testing set from
WCE-2019-Video dataset, which is statistically meaningful. The results are presented in
Table 3.

One can see from Table 3 that the performance of SS-VCF is best on both two gaps.
This shows that all the three losses together can train a best representation model of visual
correspondence, that compared with the traditional handcrafted methods, the CNN-based
method can learn a better visual correspondence representation.

Additionally, we use F-score and compression ratio (CR) as metric to compare our model
with the other five methods to implicitly reflect the representation capability of learned SS-
VCF model generating flow field as motion feature. The results are presented in Table 4, all
of which are based on our SS-VCF-MI de-redundancy method. It can be seen from Table 4
that the summarization performance of SS-VCFmodel outperforms that of all other methods
on both metrics.

4.4.2 Experimental comparisons of SS-VCF-Der and other methods

In this section, for the sake of space, we take as example 5 video segments of patient ID #2
to demonstrate the details of extracting key frames. Each segment takes the first 50 frames
in corresponding video including #2, #8, #14, #20, and #26. Here we report the indices of
extracted key frames and compression ratio. The results are based on our SS-VCFmodel and
SS-VCF-MI de-redundancy method, which are shown in Table 5. One can see that all the
compression ratios are more than 70%.

Additionally, for a fair comparison with BAME-SIFTFlow [43] and testing whether our
SS-VCF-MI de-redundancy method is effective on WCE video, we conduct a comparable
experiment for the two de-redundancy schemes. According to the evaluation metrics of F-

Table 4 Comparisons on F-score
(%) and compression ratio (CR)
(%) of our method and other
methods on the testing set,
totaling 32,503 frames

Method F-score CR

Optical Flow (HS [19]) 32.2 71.6

SIFT Flow [42] 34.5 69.6

Video Colorization [59] 37.3 71.8

TimeCycle [60] 36.5 71.4

CorrFlow [30] 35.2 70.1

SS-VCF 38.3 72.4
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Table 6 Comparisons on F-score
(%) and compression ratio (CR)
(%) of our method and other
methods on the testing set,
totaling 32,503 frames

Method F-score CR

BAME-SIFTFlow [43] 38.7 67.2

SS-VCF-Der 34.5 69.6

score and compression ratio, we report the quantitative results on the testing set. All the
results are based on SIFT Flow [42] and presented in Table 6.

Furthermore, we conduct a comparable experiment for the SS-VCF-Der scheme and our
another work: Adv-Ptr-Der-SUM [31], and report the results on F-score and compression
ratio. For a fair comparison, both models are trained on same training set and evaluated on
same testing set. The results are based on SS-VCF model and SS-VCF-MI de-redundancy
method, as well as Adv-Ptr-Der-SUM model, respectively, as presented in Table 7.

It can be seen fromTables 6 and7 that SS-VCF-Der is superior than bothBAME-SIFTFlow
and Adv-Ptr-Der-SUM on compression ratio, but inferior on F-score, which shows that the
SS-VCF-Der may obtain a low recall or precision. The reasons may stem from the following
aspects. Firstly, the WCE-2019-Video dataset itself may be not accurately and objectively
annotated, which results in an undesirable performance. Although we have set some criteria
for annotation, the process of annotation may be subjective due to the clinician’s preferences.
Furthermore, the setting conditions of selecting key framesmay be not reasonable.We believe
that an average value of motion intensity should be set, and these frames adjacent in the peak
value with higher MI than average value should be selected as key-frames. It may lead
to a high F-score. Additionally, the summarization performance of SS-VCF-Der is lower
than that of Adv-Ptr-Der-SUM. We believe that this may be because the two work adopts
different techniques. Adv-Ptr-Der-SUM is based on learning, while SS-VCF-Der relies on
visual representation and local threshold.

4.5 Qualitative results

4.5.1 Experimental comparisons of SS-VCF and other methods

We follow the code in [2] to visualize the flow fields generated by each representation
method. The visualization results include two gaps: 1-frame and 5-frame. Also, we give the
visualization of warping results. These are shown in Fig. 5(b) and (c), respectively. We take
as example frames from #001860 to #001865 to demonstrate the results of visualization.
These frames come from a sample video #8 of patient ID #2 in WCE-2019-Video, and are
shown in Fig. 5(a).

It can be seen from Fig. 5 that our method can capture more details, which may contain
potential diseases or important something. This is very important for an accurate diagnosis.

Additionally, we plot the curves of motion intensity generated by our model using (11)
and the other five methods. The curves are presented in Fig. 6. This experiment is conducted

Table 7 Comparisons on F-score
(%) and compression ratio (CR)
(%) of both Adv-Ptr-Der-SUM
and SS-VCF-Der on the testing
set, totaling 32,503 frames

Method F-score CR

Adv-Ptr-Der-SUM [31] 49.2 69.2

SS-VCF-Der 38.3 72.4

123



Multimedia Tools and Applications

001860 001861 001862

001863 001864 001865
(a)

1
′

1 Color Coding

(b)

1
′

61 Color Coding

(6)

(c)

Fig. 5 The visualizations in both flow fields and warping results. (a) Exemplar frames from #001860 to
#001865; (b) and (c) Both color coding and warping are conducted between frames #001860 and #001861,
between frames #001860 and #001865, respectively. Where each pixel denotes a flow vector, and its hue and
saturation represent the orientation and magnitude, respectively. Each result from top to bottom is obtained
by Optical Flow (HS [19]), SIFT Flow [42], Video Colorization [59], TimeCycle [60], CorrFlow [30], and
SS-VCF
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 The curves of motion intensity (MI) of each method. The X-axis and Y-axis indicate frame index and
MI value, respectively. The index ranges from 1860 to 2691, totaling 832 frames. (a) Optical Flow (HS [19]),
(b) SIFT Flow [42], (c) Video Colorization [59], (d) TimeCycle [60], (e) CorrFlow [30], and (f) SS-VCF
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on a sample video #8 of patient ID #2 in WCE-2019-Video dataset, totaling 832 frames. The
indices of the frames in video #8 are #001860 to #002691. One can see from Fig. 6 that our
method can be suitable for the description of practical motion in WCE video.

4.5.2 Experimental comparisons of SS-VCF-Der and other methods

In this subsection, we provide qualitative results to better illustrate how well the SS-VCF-
Der scheme selects WCE key frames. Figure 7 demonstrates summarization examples from
a sample video #8 of patient ID #2 in WCE-2019-Video dataset, which generated by the
three methods including: BAME-SIFTFlow [43], Adv-Ptr-Der-SUM, and SS-VCF-Der. As
shown in Fig. 7, our scheme can select some key frames with more distinct scene changes in
local neighborhood than the other two methods under the conditions of selecting key frames
in Section 3.2.

Fig. 7 Exemplar video summaries by three methods. Example summaries from a sample video #8 of patient
ID #2 in WCE-2019-Video. The blue bars show the annotation importance scores. The colored segments are
the selected subsets using the specified methods
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5 Conclusion

In this paper, we propose a self-supervised technique called SS-VCF for learning interframe
visual correspondence representations from large amounts of raw WCE videos, and then
predicting the flow field. Also, according to the resulting flow field estimation, we compute
the motion intensity between two successive frames as extracted motion features, and use
our proposed SS-VCF-MI de-redundancy method to select some frames as key ones with
distinct scene changes in local neighborhood so as to achieve the task of de-redundancy.
Extensive experiments on our collected WCE-2019-Video dataset exhibit that our model
and de-redundancy method can achieve a promising result, verifying the effectiveness of our
SS-VCF-Der scheme on the visual correspondence representation and redundancy removal
for WCE video. As future work, potential extensions can be that: First, seeking for more
suitable pretext tasks for self-supervised representation learning of endoscopy video; Second,
exploring a combination of motion features and other image features, such as color and
texture for a better de-redundancy performance. Our code will be released at https://github.
com/lanlbn.
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