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Abstract

Objectives: Respiratory motion-induced displacement of
internal organs poses a significant challenge in image-
guided radiation therapy, particularly affecting liver land-
mark tracking accuracy.

Methods: Addressing this concern, we propose a self-
supervised method for robust landmark tracking in long
liver ultrasound sequences. Our approach leverages a
Siamese-based context-aware correlation filter network,
trained by using the consistency loss between forward
tracking and back verification. By effectively utilizing both
labeled and unlabeled liver ultrasound images, our model,
Siam-CCF, mitigates the impact of speckle noise and arti-
facts on ultrasonic image tracking by a context-aware cor-
relation filter. Additionally, a fusion strategy for template
patch feature helps the tracker to obtain rich appearance
information around the point-landmark.

Results: Siam-CCF achieves a mean tracking error of
0.79 + 0.83 mm at a frame rate of 118.6 fps, exhibiting a su-
perior speed-accuracy trade-off on the public MICCAI 2015
Challenge on Liver Ultrasound Tracking (CLUST2015) 2D
dataset. This performance won the 5th place on the
CLUST2015 2D point-landmark tracking task.

Conclusions: Extensive experiments validate the effective-
ness of our proposed approach, establishing it as one of the
top-performing techniques on the CLUST2015 online lead-
erboard at the time of this submission.
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Introduction

Image guide based precise conformal radiotherapy [1] has
observably improved the effect of treatment of cancer patients.
However, there are still some challenges associated with the
technology. Among these challenges, the hardest thing to be
coped with is the internal organ displacement [2] caused by
respiratory motion, which will increase the uncertainties from
breathing and drift during image-guided radiation therapy.
That may negatively affect the accuracy and efficacy of the
treatment [3]. Thus, it is necessary to compensate for respira-
tion motion both accurately and at a real-time speed [4].

Ultrasound (US) imaging as an image-guided treatment
protocol has shown significant advantages over other medical
imaging methods such as computed tomography (CT) and
magnetic resonance imaging (MRI) to guide treatment in ra-
diation therapy. These advantages including better cost effec-
tiveness, non-ionizing, and real-time imaging, make it one of
the most ideal techniques for anatomical landmark tracking in
liver ultrasound sequences. Further, accurate and robust mo-
tion tracking can benefit image-guided radiation therapy
(IGRT) [5-7]. That ensures treatment quality, while reducing
therapy margins and radiation exposures, and hence sparing
healthy tissues. Thus recently, various methods using ultra-
sound images for respiratory motion tracking have been pro-
posed, and achieved the most promising results [8-12].
However, it is still challenging to achieve high-performance
landmark tracking using ultrasound images, owing to several
major disadvantages, including speckle noise, artifacts, and
blurred edge regions, as shown in Figure 1. For example, the
speckle noise and artifacts make it extremely difficult to
distinguish the characteristics of landmarks, which results in
target drift during tracking (Figure 1(a) and (b)). Moreover, the
blurred edge region leads to reduced appearance information
of the area centered at the point-landmark, which degrades the
performance of the tracker (Figure 1(c)).

The early tracking techniques based on liver ultrasound
images mostly adopted block matching between adjacent
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(b)

frames [13]. Some block matching approaches usually use
normalized cross-correlation [12] or metric learning [14] as a
similarity measure to localize the targets needed to be
tracked in ultrasound sequences. Other approaches [10, 15]
combine optical flow with block matching for motion esti-
mation between frames. However, these methods typically
rely on handcrafted features and extensive hyper-
parameters, and thus unsuitable for complicated anatomical
scenarios. Besides, due to the high speed of correlation
filtering [16], it is also used to calculate the correlation be-
tween the target and subsequent frames in liver ultrasound
sequences [17-19] as so to obtain the most relevant region in
corresponding frame. But the quality of input features
directly affects the final accuracy of model [20]. In recent
years, using convolutional neural networks (CNNs) to liver
ultrasound sequences tracking has achieved promising re-
sults [9, 11, 21]. However, there exit some problems when
using CNNs to liver ultrasound tracking. Firstly, although
pooling is a widely used operation for training deep model,
pooling operation increases the uncertainty of ultrasound
target tracking, which needs to predict pixel-level location.
Secondly, in the field of medical imaging, directly getting
enough available labeled medical images to train a network
with high representation ability, is extremely difficult. While
using insufficient data to train network may inhibit its
learning ability, resulting in the underfitting of a complex
model. So, attempting to evaluate the tracking performance
of model based on a small number of labeled data, in a
supervised way, is impractical and even infeasible.

All these problems motivate us to propose a self-
supervised method for robust landmark tracking in long
liver ultrasound sequences, as so to improve the quality of
image-guided radiation therapy. Inspired by the recent
success of using Siamese correlation filter network to visual
tracking [22, 23], we intend to train a robust and effective
tracker using consistency loss between the forward tracking
and back verification, in a self-supervised manner. Besides,
inspired by context-aware correlation filter [24], we build a
Siamese-based context-aware correlation filter network,
referred to as Siam-CCF, which is trained by fully taking
advantage of both labeled liver ultrasound images and un-
labeled ones. The context-aware correlation filter considers
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Figure 1: Significant challenges in liver
ultrasound sequences. (a) Speckle noise. (b)
(©) Ultrasound artifacts. (c) Blurred edge region.

global information in the context, which mitigates the effects

of speckle noise and artifacts in ultrasound images, and thus

improves the robustness of model. Furthermore, we design a

fusion strategy for template patch feature to help the tracker

obtain rich appearance information of the area centered at
the point-landmark. Meanwhile, we use CNN without pool-
ing to extract the shallow features of the image, as so to
retain more fine-grained feature information to improve the
accuracy of target localization.

Quantitative and qualitative evaluations on the CLUST2015

2D dataset demonstrate that our proposed Siam-CCF yields a

mean tracking error of [0.79 + 0.83] mm at fps of 118.6, which

proves that it can achieve a promising result and significantly
outperform other methods with respect to real time.

The main contributions of this work can be summarized
as follows:

1) We propose a self-supervised method for landmark
tracking in liver ultrasound sequences using a Siamese
structure network. His method makes full use of all data to
train a tracking model with high generalization ability.

2) We introduce context-aware correlation filter into the
proposed self-supervised framework. This reduces the
effects of noise in ultrasound images, and thus improves
the robustness to target appearance changes by explicitly
incorporating context during the learning process.

3) We design a simple and efficient fusion strategy for
template patch feature to selectively perform feature
fusion, which is based on the current tracking results
and the quality evaluation of response map.

4) We have conducted extensive comparative studies on the
CLUST2015 2D dataset. Experimental results demonstrate
that our method is effective and can achieve a promising
result, particularly in real time, which has a prominent
advantage in contrast to other methods.

The remainder of this paper is organized as follows. Section 2
reviews previous related work. Section 3 describes our
approach and training process in detail. Section 4 gives
experimental setup details, Section 5 gives ablation study,
and comparison results on the CLUST2015 2D dataset, and
finally Section 6 concludes the paper, and briefly discusses
the limitations of our self-supervised learning method.
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Related work

Ultrasound (US) imaging is a widely used medical imaging
technique. With the rapid development of this technique, a
large number of tracking methods based on ultrasound im-
ages, have been proposed. A common practice is to do sim-
ilarity matching between cropped blocks of an image
sequence [10, 12, 14, 15, 25]. Hallack et al. [25] use differen-
tially isomorphic logDemons for region-of-interest image
registration and dense Scale Invariant Feature Transform
(SIFT) [26] as a similarity measure. Nouri and Rothberg [14]
propose to map pixel intensity value of image block to low-
dimensional space through a function, which uses the
Euclidean distance metric, and find the position of the
minimum distance metric from the template through win-
dow search. Shepard et al. [12] present an NCC-based block
matching algorithm that simultaneously combines multiple
templates to determine the affine transformation from
previous frame to current frame, and applies many strate-
gies to improve the accuracy and robustness of tracking in
their framework. However, these methods rely on fine-
tuning of a large number of hyperparameters, as so to make
them suitable for an application-specific scenario.
Correlation filtering is based on fast Fourier transform
(FFT), which can convert similarity calculation process in
spatial domain into frequency domain, and exhibits high-
speed performance in target tracking tasks. Literatures [17,
19] propose to apply Kernel Correlation Filter (KCF) to ul-
trasound image tracking, in which KCF is used to compute
the similarity of plaques between hoth the current and
subsequent frame in ultrasound sequences. And the position
with the largest similarity is considered as new target
tracking position. Kondo et al. [17] extend the KCF by using
an adaptative window size and motion vector refinement
with template matching to improve the tracking perfor-
mance. Shen et al. [18] propose a robust tracker to minimize
tracking error, which involves a scale adaptive KCF, an
improved update rule, elaborately devising displacement
and appearance constrains, and calculating a weighted
displacement. Di et al. [27] present a Thermal Infrared (TIR)
target tracking method, ASTMT, based on the Aligned Spatio-
Temporal Memory Network. This approach models the TIR
target tracking scene using spatio-temporal memory net-
works, reducing similarity interference. Simultaneously, an
alignment matching module is utilized to enhance the
model’s robustness and tracking accuracy. Di et al. [28]
introduce a self-supervised tracker, self-SDCT, within the
deep correlation framework, employing multi-cycle consis-
tency loss and similarity dropout strategies to achieve high-
quality feature extraction and robust localization of tracked
targets. These above-mentioned methods are competitive in
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real time, but their tracking performance is highly depen-
dent on the quality of target template, and most of them use
handcrafted features and even pixel intensities for tracking
position prediction, which could not cope with the appear-
ance changes of complex and variable plaque in ultrasound
sequences.

It is well known that CNN technique has been success-
fully applied to a variety of visual tracking tasks. So, recently
much work using CNN technique has also been devoted to
the landmark tracking in ultrasonic sequence [9, 11, 21, 29].
The work proposed by Gomariz et al. [9] is the first to apply
CNN to the liver ultrasound sequence tracking. It adopts a
fully-convolutional Siamese network to track target features,
and combines a location prior with a network-predicted
location probability map to iteratively track targets in ul-
trasound images. Bharadwaj et al. [21] use an updated
Siamese-based network approach for robust and accurate
landmark tracking by introducing template update and a
linear Kalman filter (LKF) into original architecture. To
improve the tracking performance of CNN-based methods,
Liu et al. [11] propose a cascaded Siamese network structure
to improve the accuracy of landmark tracking through a
strategy of coarse positioning to fine positioning. Similarly,
Di et al. [30] propose an Adaptive Spatio-Temporal Context-
Aware (ASTCA) model within the DCF-based tracking
framework to enhance the accuracy of unmanned aerial
vehicle (UAV) tracking and mitigate the impact of boundary
effects. This model can learn spatio-temporal context
weights, accurately distinguish targets from the background,
and incorporate spatial context information in scenarios
involving small targets and aerial views, effectively reducing
background interference. Wu et al. [29] propose a fusion
Siamese network with drift correction, in which four
response maps generated by the cross-correlation were
fused to reduce up-sampling error, and a correction strategy
was used to revise target drift predicted by the network.
However, training this CNN network needs enough labeled
ultrasound images, while as we all know that is impractical
for liver ultrasound landmark tracking task. Although Liu
et al. [11] design an unsupervised training strategy, but it is
too complicated and heavily depends on the quality of the
selected corner points. Di et al. [31] introduces an active
learning approach for deep visual tracking, aiming to train
deep convolutional neural network models by selecting and
annotating unlabeled samples. However, the challenge lies
in the difficulty of choosing distinctive samples and dealing
with the high computational complexity of the model.

Furthermore, some deep learning methods, have made
much success in other visual tracking tasks [16, 22, 24, 32-37].
And researchers have explored the application of trans-
former technology in tracking tasks. Xin et al. [38] introduced
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a Transformer tracking method (TransT) utilizing Siamese-
like feature extraction backbone, attention-based fusion
mechanism, and classification/regression head. Bin et al. [39]
proposed a tracking architecture incorporating an encoder-
decoder transformer; the encoder models global spatio-
temporal feature dependencies, while the decoder predicts
target object positions through query embedding. Botao et al.
[40] introduced a novel one-stream tracking framework
(OSTrack) unifying feature learning and relation modeling via
bidirectional information flows in template-search image
pairs. However, to the best of our knowledge, these existing
approaches show that they almost all require a large number
of ground truth labels for training, which is impractical. Thus,
some self-supervised work using various pretext tasks as su-
pervision is proposed [22, 32, 33, 37]. These pretext tasks
involve colorization [33], cycle-consistency in time [32], or
pseudo-labels [22]. Our method closely relates to the Sia-
mese correlation filter network (CFN) [19, 22], which utilizes
forward tracking and backward verification to train a self-
supervised tracker without heavyweight annotations on
public dataset of natural scene. Thus, we intend to use this
idea to liver ultrasound sequences tracking tasks, and
empirically show that our self-supervised learning approach
is effective.

Methods

Our self-supervised framework for liver ultrasonic tracking is shown in
Figure 2. We randomly select two frames, F; and F,, from the video
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sequence. Firstly, in the previous frame F;, we randomly initialize a
target landmark and obtain a template patch z, centered around that
landmark, with a size of 125 x 125. Then, using forward tracking, we
predict the position of the target landmark in the subsequent frame F,
and obtain a search patch x with a size of 125 x 125 centered around the
predicted landmark. Finally, we reverse the tracking direction. We use
the landmark position on the search patch x, predicted in the subse-
quent frame F,, as a pseudo-label for backward validation. We then
predict the position of the pseudo-label in the previous frame F;. We
expect the result of the backward tracking to match the initial landmark
in the previous frame F;, and we measure the difference between the
forward and backward trajectories using a consistency loss trained by
the network. We start by describing our self-supervised Siamese-based
network framework and explaining how context-aware correlation
filters [24] is applied to our self-supervised learning framework. We
then elaborate on our proposed fusion strategy for template patch
feature.

Siamese-based context-aware correlation filter network

Inliver ultrasound sequence tracking scenarios, accurately and robustly
tracking landmarks usually suffer from speckle noise, artifacts, and
blurred edge regions. Directly applying discriminative correlation filter
(DCF) [19, 23] to this tracking task could not achieve the promising re-
sults. This is because the DCF is unable to learn enough distinguishing
information between both the targets and background, resulting in
losing the tracked target in the test phase. To solve this problem, we
incorporate context-aware correlation filter (CCF) [24] into the liver
landmark tracking. The CCF explicitly learns a filter that has a high
response to the template patch z in the current frame F; and close to zero
response for context patches z;. This is performed by adding the context
patches z; as a regularizer to the standard DCF formulation [22, 23] (see
Eq. (1)). The context patches, denoted as z; where i € [0, 1, ..., k], are
patches of the same size as the template patch z. They are located

ground-truth Gaussian label

Forward Tracking

[ﬂ/ —> ConvBlock

template patch z

»(2)

Ty »(x)

]
-

Fq ConvBlock —|
Pseudol
— ConvBlock —> label Lconsistency

search patch x s

gz I
template patch x
o (2)
F,
’—> ConvBlock =—>
search patch z
Backward Verification T

Figure 2: An overview of self-supervised Siam-CCF framework. In training phase, we train the tracker by forward tracking and backward validation. In
inference phase, we used only the forward tracking. The blue background in the figure represents the forward tracking part of the model, and the green

background represents the backward validation part of the model.
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adjacent to the template patch z in the vicinity. And hence, it is beneficial
to providing a closed-form solution to remain computationally efficient.
This ensures our method has a good performance in real time. By
minimizing Eq. (1), the desired filter w can be obtained.

min|w  ¢(z; 6) - yI* + Alwl* + A Zl Iw x o (z; O)I, ()]
i
where ¢(-; 0) denotes feature space encoded by parameters 6, « means
circular correlation, A; and A, are constant regularization, y is an ideal
Gaussian response map peaked at the target landmark, and k is the
number of sampling patches. The following closed-form solution is ob-
tained in the Fourier domain as follows [24]:

< T (0(z;0)) @']*Q} )
T (0(2:0)0.7 (9(z:0) + M+ 4 Y5, 7 (0(2;0)0.7 (9(2:;0)) )’

)

where o is the element-wise product, .7 (-) denotes the Discrete Fourier
Transform (DFT), .7 % (-) indicates the inverse DFT, and * is the complex
conjugate operation.

We integrate the idea of CCF into the self-supervised Siamese-
based network framework. In the forward tracking, the response map
r, of a search patch x in the next frame F, can be obtained by convolving
with the learned filter w:

-1

w=.7

re= 7 ((F (W) 0 7 (9(x;0)). @®)

In the backward verification, using the response map r,, we create a
pseudo Gaussian label denotes as y,, and then generate a target template
w;, by following Eq. (2). Finally, the response map r; corresponding to
target patch x in the current frame F; can be computed by:

r=71((F W) 07 (p(z;0)). @

Ideally, the response map r should be identical with the originally given
label y. In other word, the peak of r should be closed to the highest peak
in the Gaussian response map y at the initialized landmark position.
Thus, the network ¢(6) could be trained in a self-supervised manner by
minimizing the following loss function as follows:

»Cconsistency = ||T" —y”% ©)

In the framework, we use a randomly initialized template patch in
the current frame as label to predict its location in the next frame, in a
forward track manner. Then, we reverse the sequence, and take the
predicted location as a pseudo label to track backward. We formulate
the difference between both initial template patch and the predicted
patch as consistency loss for network training without ground truth
annotations.

Fusion strategy for template patch feature

During correlation filter tracking, the template patch of the target
changes continuously as tracking to adapt changes of the appearance in
the target. In addition, the template patch is contaminated due to the
accumulation of tracking offsets, which causes the tracker drifting. We
empirically found that an appropriate template patch for the liver ul-
trasound sequence could improve the performance of correlation filter
tracking. Therefore, we propose a fusion strategy for template patch
feature to enhance the robustness of the Siam-CCF. Specifically, we
obtain the current template patch based on the tracking results of the
previous frame, which can adapt to complex changes in the appearance
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of the target, and since the initial template patch comes from the first
frame of the ultrasound sequence, it correctly reflects the original
appearance of the target. Then, we encode the initial and current tem-
plate patches in the feature space to fuse them as a new feature.

To perform template feature fusion efficiently, we introduce the
average peak-to correlation energy (APCE) [41] as a tracking confidence
metric, which is defined as follows:

|max (r) — min (r)[*

APCE = IR
Mean ((r — max(r))“)

6

The response map r of the model output reflects the quality of the
training sample (i.e., the feature of the template patch) during tracking.
The response graph represents the predicted location probability of the
target landmark in the template patch on the search patch. It has a
distinct peak, where the highest response is centered around the loca-
tion of the target landmark, and gradually decreases in value as the
distance from the target landmark increases. When the tracking results
are correct, the response map output by the model with a distinct peak
and is close to the ideal 2-D Gaussian distribution. It also represents that
the training samples used by the model accurately reflect the appear-
ance of the target. Therefore, we fuse the features when the current
APCE value is lower than its moving average. Based on Eq. (6), the
improvement of our fusion strategy for template patch feature is as
follows:

0(20,0) + 9 (2,0), if APCE; < ,B— Z APCE;

Ztusion = i=1

0(z,0), others.

where Zgsion 1S the fused feature, and f is a weight factor, z, and z,
represent the initial template patch of the first frame and template patch
of the current frame, respectively.

Training process

In the CLUST 2D dataset, statistically, there are about 90 % of ultrasound
sequence frames without annotations. Hence, we use self-supervised
learning methods to train datasets with partially annotated and unan-
notated, which can improve the generalization and robustness of
networks.

We consider that by initializing the target landmark at the
center of the entire image, the target landmark will not move out of
the search area in the short term. Based on this analysis, we
randomly select three different frames from an ultrasound sequence
with 10 consecutive frames, and initialize the target landmarks to
obtain three patches of size 125 x 125 containing the target land-
marks. One of which is selected as the template patch z, the
remaining two are set as the search patch x, here we refer to the
search patch x as x4 and x,, respectively. Tracking forward only once
can lead to inaccurate target localization over longer tracking du-
rations. Therefore, during training, we perform multiple forward
traces, which helps to alleviate the problem of inaccurate target
localization that may occur over time:

I =T (T W) ©F (9(Xa;0))
e =7 (7 () 07 (9(Xa30)), ®
roo=7 ((f/‘(wm)) 07 (9(z;0))).

To train a model with stable performance, we use 3-frame tem-
poral span in the actual training process, which requires that each
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forward tracking and backward validation can correctly predict the
landmark location, otherwise tracking failure errors will accumulate.
Algorithm 1 shows the training iterations.

Algorithm 1: A train iteration of the tracking algorithm

Input: Template patch z and two search patches x3, X,, 2-D Gaussian map y;
Output: The response map r

1 Extracting features of the input images, denoted as zf, xf;, and xf,

2 Forward tracking: calculate the corresponding response
revq = model(zf, xfy)

3 Get the maximum value on the response map ry, and generate a
pseudo-label for x; with this position

4 Forward tracking: calculate the corresponding response
Ier2 = model(xfy, xf2)

5 Get the maximum value on the response map ry, and generate a
pseudo-label for x, with this position

6 Backward verification: calculate the corresponding response r, = mod-
elixf>, 2f)

7 Calculate the consistency loss, loss = MSE(ry, y;)

8 Gradient back propagation

Inference

During inference, we only need the results of forward tracking, not
backward verification. The annotation of the landmark position of the
first frame is given in the video sequence. With this position as the
center, an area is cropped as a template patch. The search patch is
determined according to the target center position and target size.
Then, the template patch and the search patch are fed into the
convolution block of Siam-CCF to extract features. The resulting feature
map is calculated using a feature-level correlation filter to obtain a
response map. For tracking the appearance variations in ultrasound
sequence constantly, we update the filter parameters online as follows:

Fw)=y--7 W)+ 1-y)--F (W), ©

where y € [0, 1] is the linear interpolation factor.

Experimental setup
Datasets

Our 2D liver ultrasound sequences are provided by the MICCAI 2015
Challenge on Liver Ultrasound Tracking (CLUST) [42] database. The data
was gathered from ultrasound liver sequences of healthy volunteers
while they were free breathing. The training set consists of 24 sequences,
where 10 % of the images are annotated. The test set consists of 39
sequences, where the first frame of each sequence is provided with
annotations. The sequence is divided into the following five groups (CIL,
ETH, ICR, MED1 and MED2) according to different sampling locations
and scanners. The spatial resolution of the images ranges from
0.27 x 0.27 mm to 0.77 x 0.77 mm. The dataset contains 63 2D liver US
sequences, characterized by full frames ranging from 895 to 15,640. The
dataset was manually annotated by three observers and reviewed by
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Table 1: Statistics for each category sequence in the CLUST dataset. We
count the number of training and test sets for each category sequence,
the average number of image frames per category sequence, and the
average number of labels per category sequence.

Sequence Training Test Averageimage Average labels
class set size  set size frames frames
CIL 3 6 1,172 138
ETH 16 30 5,497 551
ICR 12 13 3,646 397
MED1 16 27 2,542 255
MED2 6 9 2,715 272

another observer. The last comment for each target is the average of all
three manual comments. Each ultrasound sequence has one to five
landmarks. Details of the sequences are shown in Table 1 below. The
tracking results will be submitted to the organizers, who will quanti-
tatively evaluate the tracking results and the ground truth and display
them on a leaderboard.

Evaluation criteria

Given the ground truth annotations p; and tracking results p; for target i,
the tracking error (TE) is calculated as

TE; () = |Ip: ((£) = B; (B)]1» (10)

where i € {CIL, ETH, ICR, MED1, MED2}, p(t) is the result of the
considered tracking method tracking target i in frame ¢, and p(¢) is the
result of marking target i in frame ¢ using manual labeling. Eq. (10) is to
use the Euclidean distance to measure the deviation between the
tracking result and the manual labeling. Tracking error is summarized
by the mean, standard deviation (Std), and 95th percentile (95th) of
Euclidean distance [42] over all frames.

Implementation details

In our experiments, we have two ways to generate template patch z:
without initial annotations and with initial annotations. In practice,
three patches are cropped from the ultrasound sequence frames during
the training process. Patch cropping position is the center point of
sequence frames for those without initial annotations; for those with
initial annotations, template patch z is center cropped with the anno-
tation point, and search patch x; is referenced to the position of template
patch z annotation point. In our work, both approaches are referred to
as self-supervised learning.

For the design of the network structure of the tracker, we refer to the
work of Wang et al. [22] using DCFNet [23] as our baseline. Our network
of the convolutional layer is comprised of Stage 1 of VGG-16 [43], removing
the pooling layer and changing the output from 64 channels to 32 chan-
nels. Furthermore, we employ a local response normalization (LRN) layer
at the end of the convolutional layers. In preprocessing training data, we
merely crop the central patch of each frame. The patch size was 1/6 of the
whole image and further adjusted to 125 x 125 as the network’s input.

In the pre-processing process, we cropped and resized all the
training data centers to the image of the specified size, 125 x 125. Then,
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the ideal heatmaps (i.e., labels) are generated based on the center po-
sition using a Gaussian distribution with a sigma of 4. We train the
model with the stochastic gradient descent (SGD) [44] optimizer, where
the momentum is 0.9 and the weights decay to 0.005. Set the learning
rate to 0.01 and train with 30 epochs and a mini-batch size of 64. We train
all the network parameters from scratch without pre-training.

In the inference stage, we set a fixed scale transformation S={s
$=1.0275, k=-1, 0, 1} to obtain multiple scale response maps, and the
location of the maximized response value in the response maps is the
predicted landmark location. Empirically, we assign the model linear
interpolation factor y and the weight factor B to 0.01 and 1.0,
respectively.

Our network was achieved with Pytorch [45], with the network
training and the experiments ran on an Nvidia GeForce RTX 1080Ti GPU.

|

Results and discussion
Results

We evaluated our proposed model in the CLUST 2D test set.
We evaluated our model on each image sequence group in
the test set specified by the organizers. The image sequence
group category of the test set is the same as that of the
training set, the Sequence column shows the five categories
of the image sequence group and overall, and the num col-
umn indicates the number of tests for each image sequence
group. The overall accuracy of the model was 0.79 + 0.83 mm
and the 95th is 2.33 mm. Especially for the ETH category in a
set of 30 image sequences, the accuracy reached
0.61 + 0.50 mm, with a 95th percentile of 1.62 mm, as shown
in Table 2.

Quantitative analysis

Table 2 shows the tracking performance of our method on
the test set for different groups. The tracking error of mean is
less than 1mm for most sequences, with the ETH group
performing best on all metrics. As shown in Figure 3, the
median tracking error performance for each group remains
low, and even with some outliers, the maximum outlier does

Table 2: Quantitative result of landmark tracking on CLUST. The down
arrow (]) indicates that the smaller the number, the better.

Sequence Num Mean, mm | Std, mm | 95th, mm |
CIL 6 1.24 1.23 4.29
ETH 30 0.61 0.50 1.62
ICR 13 0.88 1.04 3.36
MED1 27 1.1 1.16 3.58
MED2 9 0.91 0.80 2.54
Overall 85 0.79 0.83 2.33
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Figure 3: The tracking errors of the five groups on the test dataset
obtained by Siam-CCF.

not exceed 3.60 mm. It is worth mentioning that the ETH
group has the highest number of sequence frames in the
CLUST dataset but the lowest average tracking error, which
indicates that our method can perform sufficiently robustly
in ultrasonic tracking tasks under long tracking time.

Table 3 shows our method compares to state-of-the-art
methods in the test set. In Table 3, the no-tracking row in-
dicates that no tracking method is used, and the method uses
the landmark position on the initial frame to predict the
landmark position on subsequent frames. This row points
out the need for landmark tracking methods in image-
guided radiotherapy. Furthermore, our method is much
faster than the state-of-the-art methods in the inference
phase, achieving a balance between accuracy and speed. Our
method can also outperform the results of Shepard et al. and
Williamson et al. in terms of the tracking error of Std,
demonstrating the robustness of Siam-CCF on the liver ul-
trasound sequence landmark tracking task.

Table 4 shows the comparison of the tracking perfor-
mance of our method with the state-of-the-art methods on
different sets of test sets. In Table 4, except for the large
performance difference in the MED2 group, the perfor-
mance differences of other groups are not significant. But in
terms of processing speed, our model shows clear
advantages.

Although the CLUST 2D dataset only provides a low
proportion of scattered annotations, we can still make full
use of it in our network training. Compared with self-
supervised learning, we provide annotated landmarks in
the first frame of training samples under self-supervised
learning, which were set as template patches rather than
random cropping patches. The search patches in the
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Table 3: The performance of tracking test set for other state-of-the-art
methods and our methods (* indicates the on-site challenge at MICCAI
2015 CLUST, no access to 20 % of all data before computation of the
tracking result). The down arrow (|) indicates that the smaller the num-
ber, the better.

Participant Mean,mm | Std,mm | 95th, mm |
Liu et al. [11] 0.69 0.67 1.57
Shepard et al. [12] 0.72 1.25 1.71
Williamson et al. [10] 0.74 1.03 1.85
Wang et al. [46] 0.75 0.62 1.65
Ours 0.79 0.83 2.33
Wu et al. [29] 0.80 1.16 2.29
Jeungyoon et al. [19] 0.85 0.80 2.32
Shen et al. [18] 1.1 0.91 2.68
Hallack et al.? [25] 1.21 3.17 2.82
Gomariz et al.? [9] 1.34 2.57 2.95
Makhinya and Goksel® [15] 1.44 2.80 3.62
Bharadwaj et al. [21] 1.60 3.69 4.1
Thle [47] 2.48 5.09 15.13
Kondo [17] 2.91 10.52 5.18
Nouri and Rothberg [14] 3.35 5.21 14.19
No tracking [42] 6.25 5.11 16.48

Table 4: Comparison with state-of-the-art landmark tracking results in
CLUT. The down arrow (|) indicates that the smaller the number, the
better.

Sequence Method Mean, mm | Std, mm | 95th, mm |
CIL Liu et al. 1.19 1.16 4.16
Ours 1.24 1.23 4.29
ETH Liu et al. 0.59 0.57 1.24
Ours 0.61 0.50 1.62
ICR Liu et al. 0.77 0.78 2.70
Ours 0.88 1.04 3.36
MED1 Liu et al. 0.78 0.60 1.81
Ours 1.1 1.16 3.58
MED2 Liu et al. 0.80 0.90 1.73
Ours 0.91 0.80 2.54

Table 5: Performance of network trained with/without init annotations
learning. The down arrow (|) indicates that the smaller the number, the
better.

Initial annotations Mean, mm | Std, mm | 95th, mm |
With 0.97 0.98 2.69
Without 1.19 1.14 2.92

training sample are determined based on the position of
the patch template in the first frame. In this way, the
patches of the input model can obtain more meaningful

DE GRUYTER

objects than randomly clipped ones. Table 5 shows the
evaluation results, where self-supervised learning with
initial annotations under the CCF resulted in a reduction
0f18.49,14.04 and 7.88 % for TE, Std and 95th, respectively.
The effect of this incompletely supervised training is most
evident in the TE metric, which is also the most critical
metric. Compared to randomly cropping patches, with
initial annotations, which gives an initial target patch,
allows the model to learn more meaningful tracking in-
formation and thus obtain better tracking results.

Qualitative analysis

To see the effect of our method more visually, we visualize
some frames from the ultrasound sequence of the dataset.
Figure 4 represents an example of tracking a landmark in a
randomly selected sequence of images in the training set. For
better illustration, we visualized the tracking results on
some of the frames. See the bottom of Figure 4, the landmark
locations predicted by our method are very close to the
ground truth, and the tracking trajectory is similar to
respiration showing a certain periodicity.

In order to emphasize the importance of the Siam-
CCF, we visualize how it compares to the baseline in
terms of accuracy on different image sequences. Table 6
has shown at the data level that CCF and template feature
fusion strategies help improve the model’s accuracy and
robustness. Another aspect, in Figure 5, the tracking ef-
fects corresponding to the four image sequences are
shown. Each row represents one image sequence. Column
(a) represents the patches of the first frame of the image
sequence. Column (b) represents the patches of the sub-
sequent frames of the image sequence with ground truth.
The first row represents an image sequence (CIL-01).
Since the scenes of this sequence are not complex, the
errors of both methods are within acceptable limits, but
Siam-CCF is still better than the baseline. The second row
represents an image sequence (ETH-01-1). The sequence
frames in this group are generally extended, with the
most prolonged frames being over 10,000. Although the
long-time tracking task is difficult, our method is
competent for this type of long-time tracking. The third
row represents an image sequence (ICR-01), where the
landmark template changes as it moves. Our fusion
strategy for the template patch feature allows the model
to obtain richer appearance information, keeping the
template clean as the tracking progresses. The fourth row
represents an image sequence (MED-02-3), in which only
Siam-CCF can retrieve the landmark the baseline failed
to do so. The baseline gradually shifts as the tracking
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Figure 4: Results of tracking the part of the
target ICR-04_1 (from 200 to 500 frames). (Top
row) The corresponding result map of the
predicted result (blue line) moving in the

3201
x
315 f———tm e e T — Prediction __—~f
[a] —=- No tracking
3101 X Ground truth
200 250 300 350 400 450

Frame

transverse direction of the image (Dim x)
relative to the initial position (red dashed line)
as the number of frames increases. The

human-annotated ground truth p(t) is shown
as a green cross. (Middle row) The corre-
sponding result map of the predicted result
(blue line) moving in the longitudinal direction

200 250 300 350 400
Frame

frame=270 frame=331

Table 6: Ablation study with different modules in the network. Track
error of mean, std, 95th and speed are reported. The down arrow (|)
indicates that the smaller the number, the better, and the up arrow (T)
indicates that the larger the number, the better.

Baseline CCF Fusion  Mean,- Std, 95th, Speed,
mm | mm | fps T

mm |
v 1.49 1.57 4.26 2414
v v 1.33 1.29 3.78 2021
v v 1.31 1.27 3.24 138.7
v v v 1.19 1.14 2.92 118.6

process progresses, and our context-aware filter keeps
the tracking error within a low range.

Ablation study and analysis

In this section, we perform five cross-validation tests on the
CLUST 2D dataset to verify the impact of different modules
on the tracking performance. The configuration of the
hyperparameters is the same unless otherwise specified.

Context-aware correlation filter

In our experiments, we explored the performance of
context-aware correlation filters on the dataset. As shown
in Table 6, experiments show that the CCF module can

250 of the image (Dim y) relative to the initial
position (red dashed line) as the number of
frames increases. The human-annotated
ground truth p{t) is shown as a green cross.
(Bottom row) Three images highlighting
results in different frames, showing the
differences between predicted p;(t) (red dot)
and ground truth p((t) (green cross) positions.

frame=415

reduce the mean TE of landmarks, which significantly re-
duces the standard deviation (Std) and 95th percentile
(95th) of TE. Specifically, without considering the fusion
strategy for template patch feature, the mean TE is reduced
by 0.18 mm with the CCF module, and the standard devia-
tion (Std) and 95th percentile (95th) are reduced more
significantly by 0.30 and 1.02 mm, respectively. As shown in
Figure 6, the heatmap with the CCF module can focus more
precisely on the landmark and suppress artifacts around
the target from interfering with it. The above results indi-
cate that the CCF module improves tracking robustness
better than the baseline.

Fusion strategy for template patch feature

We experimentally verified the importance of the fusion
strategy for template patch feature for our model, as shown
in Table 6. Compared with non-template feature fusion
methods, the tracking error with the fusion strategy for
template patch feature is minor and more robust. The
strategy mitigates the target drift during tracking by enriching
the appearance information of the template, which reduces the
overall tracking error and is less time-consuming.

The tracking error of our proposed method is signifi-
cantly reduced compared to the baseline, as seen in the last
row of Table 6, where the TE of mean, Std, and 95th metrics
are reduced by 20.13, 27.39, and 31.46 %, respectively. How-
ever, the fps of the inference stage decreases. After analysis,
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Figure 5: Visualization of baseline and Siam-CCF tracking results on four different sequence groups. Rows: patches of ultrasound image sequence.

Columns: frames at different time periods and with annotations in a given ultrasound image sequence. First row: images from the first marker landmark
of (IL-01. Second row: images from the first marker landmark of £E7TH-017-1. Third row: images from the first marker landmark of ICR-07. Fourth row: images
from the fourth marker landmark of MED-02-3. (a) The first frame patch in the ultrasound image sequence, i.e. the template frame. (b) Search patch with
ground-turth in subsequent image sequence

we find that CCF needs to calculate the filter responses
around the template patches, and the fusion strategy for
template patch feature increases the post-processing
computation, which leads to the decrease of fps in the

inference stage. Although adding modules will affect the
inference speed of the model to some extent, our method can
still maintain above 100 fps in inference speed due to the
simplicity of our overall network structure.
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(a) Target

(b) Without CCF  (c) With CCF

Figure 6: Visualization of the heatmap without/with CCF module
tracking results. (a) Location of landmarks on search patch. (b) Tracking
heatmap without CCF module. (c) Tracking heatmap with CCF module.

Conclusions

In this paper, we propose a robust, accurate, and efficient self-
supervised tracking algorithm named as Siam-CCF. In Siam-
CCF, we introduce a context-aware correlation filter to the
siamese-based nerual network to implement self-supervised
liver tracking. Siam-CCF is trained in a self-supervised
manner using the loss of consistency between forward
tracking and backward validation. Meanwhile, we propose a
fusion strategy for template patch feature to help the model
obtain richer template information. Our method achieves an
overall accuracy of 0.79 + 0.83 mm on the CLUST 2D dataset.
Moreover, benefiting from the simplicity of the overall
network structure, our tracker can easily achieve real-time
tracking on the GPU. In comparison to models relying on
annotated data, while our approach attains faster speeds and
obviates the need for extensive annotation, this advantage is
countered by a trade-off in accuracy. For our future en-
deavors, we plan to design a motion model integrating spe-
cific target motion patterns to enhance tracking accuracy.
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