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Fangyijie Wang i, Guénolé Silvestre i, Kathleen Curran j, Hongkun Sun k, Jing Xu k,  
Pengzhou Cai l, Lu Jiang l, Libin Lan l, Dong Ni m,2,  
Mei Zhong n,2, Gaowen Chen o,2, Víctor M. Campello p,2,  
Yaosheng Lu a,2, Karim Lekadir p,q,2

a Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
b Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
c Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
d Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hongkong, China
e Computer Vision and Robotics Group, University of Girona, Girona, Spain
f Canon Medical Systems (China) Co., LTD, Beijing, China
g College of Artificial Intelligence, Nankai University, Tianjin, China
h College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
i School of Medicine, University College Dublin, Dublin, Ireland
j School of Computer Science, University College Dublin, Dublin, Ireland
k School of Statistics & Mathematics, Zhejiang Gongshang University, Hangzhou, China
l School of Computer Science & Engineering, Chongqing University of Technology, Chongqing, China
m National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and 
Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
n NanFang Hospital of Southern Medical University, Guangzhou, China
o Zhujiang Hospital of Southern Medical University, Guangzhou, China
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A B S T R A C T

Segmentation of the fetal and maternal structures, particularly intrapartum ultrasound imaging as advocated by 
the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) for monitoring labor progression, 
is a crucial first step for quantitative diagnosis and clinical decision-making. This requires specialized analysis by 
obstetrics professionals, in a task that i) is highly time- and cost-consuming and ii) often yields inconsistent 
results. The utility of automatic segmentation algorithms for biometry has been proven, though existing results 
remain suboptimal. To push forward advancements in this area, the Grand Challenge on Pubic Symphysis-Fetal 
Head Segmentation (PSFHS) was held alongside the 26th International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI 2023). This challenge aimed to enhance the development of 
automatic segmentation algorithms at an international scale, providing the largest dataset to date with 5,101 
intrapartum ultrasound images collected from two ultrasound machines across three hospitals from two in
stitutions. The scientific community’s enthusiastic participation led to the selection of the top 8 out of 179 entries 
from 193 registrants in the initial phase to proceed to the competition’s second stage. These algorithms have 
elevated the state-of-the-art in automatic PSFHS from intrapartum ultrasound images. A thorough analysis of the 
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results pinpointed ongoing challenges in the field and outlined recommendations for future work. The top so
lutions and the complete dataset remain publicly available, fostering further advancements in automatic seg
mentation and biometry for intrapartum ultrasound imaging.

1. Introduction

Intrapartum ultrasound imaging of fetal and maternal structures 
(specifically, pubic symphysis and fetal head, PSFH) provides clinicians 
and researchers with critical visual insights into labor progression, 
which involves tracking the descent of the fetus relative to the maternal 
pelvis (Sherer, 2007). Ultrasound imaging technique is invaluable not 
only during the first and second stages of labor but continues to be useful 
up until birth. It plays a significant role in the management of abnormal 
labor (Gimovsky, 2021), and in advising the optimal timing for labor 
induction (Badr et al., 2024). Intrapartum ultrasound is instrumental in 
predicting labor duration (Carvalho Neto et al., 2021), delivery method, 
and the likelihood of complicated operative interventions (Hadad et al., 
2021), with the angle of progression (AoP)—both at rest and its varia
tions—serving as key predictors (Angeli et al., 2020) (Fig. 1).

Automated segmentation and quantification of the complex, 
dynamically changing PSFH during labor can significantly enhance 
diagnostic accuracy, given that manual segmentation is both time- 
intensive and prone to human error and inter-rater variability (Pietsch 
et al., 2021). It is clinically pertinent to analyze the morphometry of the 
evolving PSFH, where measures like the AoP can be objectively assessed 
against population-based benchmarks of normal progression (Angeli 
et al., 2020). The AoP is defined as the angle between the longitudinal 

axis of the pubic bone and a line extending from the lower edge of the 
pubic symphysis to tangentially touch the deepest bony part of the fetal 
head (Kalache et al., 2009). Research indicates that an AoP of 120◦ or 
more is strongly associated with a high likelihood of spontaneous 
vaginal delivery (Dall’Asta et al., 2019). Currently, AoP measurements 
are predominantly performed manually or semi-automatically 
(Conversano et al., 2017; Haberman et al., 2021), with full automa
tion of PSFH segmentation for AoP biometry remaining a largely un
explored domain.

Technical challenges abound for automatic segmentation of PSFH 
during labor, which sees significant anatomical changes due to uterine 
contractions that affect image clarity and alter spatial relationships be
tween the fetal head and pubic symphysis (Sharf et al., 2007). The 
smaller size of the pubic symphysis compared to the fetal head (Pavličev 
et al., 2020) adds complexity to precise segmentation, crucial for ac
curate AoP biometry. The measurement of AoP involves three critical 
landmarks—two associated with the pubic symphysis and one with the 
fetal head—demonstrating significant dependency in this segmentation 
process (Fig. 1A, B). Ultrasound imaging itself presents challenges; it is 
patient-specific, operator-dependent, and machine-specific (Zhao et al., 
2023). The intrinsic properties of ultrasound, such as signal dropouts, 
artefacts, missing boundaries, attenuation, shadows, and speckle, add to 
the modality’s complexity (Li et al., 2022; Wright et al., 2023; Zamzmi 

Fig. 1. Overall Workflow of Clinical Image Utilization and the Pubic Symphysis-Fetal Head (PSFH) Segmentation Challenge. A) Clinical images are acquired 
via a transperineal ultrasound (US) approach using mid-sagittal scans from pregnant women during labor. B) Expert manual segmentation of US images is performed 
to delineate the Pubic Symphysis (PS) and Fetal Head (FH). This facilitates the derivation of the biometric parameter—angle of progression (AoP), through the 
identification of three critical landmarks within the PSFH segmentation. C) In the PSFHS Challenge, a total of 5101 2D US images were categorized, with 4000 
designated for training, 401 for initial testing (Testing Set 1), and 700 for final evaluation (Testing Set 2). The training dataset was made accessible to all registered 
participants, while Testing Set 1 was used to refine and select the top 10 methodologies. Testing Set 2 was utilized for the conclusive assessment of these meth
odologies. The eight top-performing algorithms, along with their source codes, were subsequently ranked based on segmentation and measurement metrics. D) 
Accurate measurement of the AoP, based on the anatomical structures of the PSFH, provides crucial information with other multimodal data for assessing labor 
progression and predicting the mode of delivery.
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et al., 2022; Zimmer et al., 2023). Depending on the transducer’s 
orientation, images may appear distorted or incomplete, presenting 
additional challenges for automatic methods (Mischi et al., 2020; Torres 
et al., 2022).

Recent advancements underscore the potential for automatic 
methods to transform this field (Bai et al., 2024; Baumgartner et al., 
2017; Carneiro et al., 2008; Chen et al., 2017; Fiorentino et al., 2023; 
Jang et al., 2018; Lin et al., 2019; Pu et al., 2021; Wang et al., 2022b; Wu 
et al., 2017; Yang et al., 2019; Yu et al., 2018). Since the International 
Society of Ultrasound in Obstetrics and Gynecology (ISUOG) introduced 
the Practice Guidelines for Intrapartum Ultrasound in 2018 (Ghi et al., 
2018; Vogel et al., 2024), various deep learning strategies, especially 
those based on UNet architectures (LeCun et al., 2015), have been 
developed for the segmentation of pubic symphysis and fetal head (Bai 
et al., 2022; Chen et al., 2024d; Lu et al., 2022a; Ou et al., 2024). In
novations include dual attention decoders and dual decoder strategies, 
which improve feature extraction and boundary delineation in intra
partum ultrasound images (Chen et al., 2024b; Chen et al., 2024c). 
Further enhancements incorporate shape-constrained loss functions and 
directional information to optimize model performance. However, the 
evaluation and broad application of these methodologies are limited by 
the availability of diverse and large datasets (Chen et al., 2024a; Lu 
et al., 2022b). Therefore, the development and dissemination of anno
tated datasets from multiple devices and centers are crucial for 
advancing automated tools in intrapartum ultrasound imaging, facili
tating robust computer-aided diagnostic systems to support labor and 
delivery management.

This paper details the organization of the Pubic Symphysis-Fetal 
Head Segmentation (PSFHS) Challenge, describes the submitted seg
mentation frameworks, and provides a thorough evaluation of the re
sults using the Biomedical Image Analysis ChallengeS (BIAS) method 
(Maier-Hein et al., 2020). The PSFHS Challenge aimed to develop 

reliable, valid, and reproducible methods for analyzing intrapartum 
ultrasound images of PSFH during labor, using a dataset from two in
stitutions and two vendors to drive the development of automatic seg
mentation methods for AoP biometry. Our evaluation compares 
algorithms on two concealed testing datasets, examining performance 
variations across different hospitals, ultrasound machines, and relative 
positions (i.e., AoP≥120◦ and AoP<120◦) (Fig. 1C). We also explored 
the impacts of architectural design, data preprocessing, post-processing, 
loss functions, and optimizers on segmentation performance. Our 
comprehensive benchmarking study offers insights into necessary 
design choices and practical considerations. Through this global 
benchmarking effort, we aim to optimize the framework for PSFH seg
mentation for AoP biometry, providing critical insights into effective 
strategies and techniques. These algorithms developed through the 
PSFHS Challenge will enhance our understanding of the underlying 
causes of labor arrest and guide the development of intrapartum 
guidelines and clinical risk stratification tools for early interventions, 
treatments, and care management decisions (Fig. 1D). These approaches 
could potentially extend to other areas of fetal segmentation and ob
stetric ultrasound imaging, having a significant impact on the broader 
imaging community.

2. Material and methods

2.1. Challenge setup

The Pubic Symphysis-Fetal Head Segmentation (PSFHS) Challenge 
was hosted alongside the 26th International Conference on Medical 
Image Computing and Computer Assisted Intervention (MICCAI 2023) 
on the Grand Challenge platform (https://ps-fh-aop-2023.grand-chall 
enge.org/) to facilitate the comparison of different algorithms in the 
field of intrapartum ultrasound image analysis. It is a repeated event 

Fig. 2. Data Sources and Distribution of the US Image Dataset Used for This Study. A) Representative cases (i.e., AoP<120◦ and AoP≥120◦) from each hospital in the 
US image dataset are illustrated. Images from the Nanfang Hospital of Southern Medical University (SMU) and the First Affiliated Hospital of Jinan University (JNU) 
were captured using the ObEye system. In contrast, those from the Zhujiang Hospital of SMU were captured with the Esaote MyLab system. B) The training dataset 
includes images sourced from SMU (Nanfang Hospital and Zhujiang Hospital), with AoP values ranging from 60◦ to 180◦. C) Testing Set 1 comprises images from 
SMU (Zhujiang Hospital) and JNU (First Affiliated Hospital), featuring AoP values from 50◦ to 160◦. D) Testing Set 2 contains images from SMU (Zhujiang Hospital) 
and JNU (First Affiliated Hospital), with AoP values extending from 50◦ to 180◦, offering a broad spectrum for comprehensive evaluation.
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with annual MICCAI submission deadline. The challenge targeted the 
segmentation of the pubic symphysis (PS) and fetal head (FH) regions 
using deep learning techniques.

The challenge was organized by a subgroup specializing in "Deep 
Learning in Intrapartum Ultrasound Image Analysis," part of a broader 
initiative focused on the industrialization of key technologies for labor 
monitoring. The organizing team included multidisciplinary experts 
such as early-stage researchers, PhDs, assistant, associate, and full pro
fessors, along with practicing obstetricians and sonographers from three 
medical centers of two universities.

In the challenge, members of the organizer’ institutes can participate 
but not eligible for awards and not listed in leaderboard. These partic
ipants were tasked to develop and refine machine learning models for 
segmenting PSFH from the intrapartum ultrasound images. They were 
allowed to use pre-trained models to provide fully automated segmen
tation methods. The challenge unfolded in two stages:

• Training and Initial Submission: Commencing on January 1, 2023, 
participants accessed the training dataset via Zenodo (available at 
https://zenodo.org/records/7851339#.ZEH6eHZBztU). Competi
tors were required to develop their algorithms and encapsulate them 
within Docker containers. These containers were subsequently sub
mitted to the grand-challenge platform, where their performance 
was assessed using a first set of test images, which remained undis
closed to the participants. This evaluation phase concluded on 
August 30, 2023.

• Final Evaluation: The ten highest-performing teams from the initial 
phase advanced to the second stage. Modifications were necessitated 
due to overlapping methodologies, specifically, two teams from the 
same institution employing identical strategies were combined, and 
another was disqualified for not providing sufficient details about 
their algorithm. This adjustment left eight teams in the competition. 
These teams submitted their revised Docker containers for final 
evaluation against a second set of concealed test images by 
September 20, 2023. The top seven teams were honored during an 
awards ceremony on October 8, 2023, the recording of which is 
available at https://www.youtube.com/watch?v=NvP-bT8I1fE&t 
=1 s. All the teams were invited to contribute to draft and submit 
a manuscript describing the methods and results. The first and last 
author of these teams were listed as authors of this challenge report. 
The participating teams also can publish their own results separately 
after coordination to avoid significant overlap with the challenge 
report.

All algorithms developed as part of this challenge have been made 
publicly available on GitHub (https://github.com/maskoffs/PS-FH 
-MICCAI23). For a detailed overview of the challenge setup and objec
tives, please refer to the final challenge proposal documented on Zenodo 
(https://zenodo.org/records/7861699).

2.2. Dataset

Dataset overview: The PSFHS2023 dataset consists of 5101 2D intra
partum ultrasound images retrospectively collected from 1175 pregnant 
women with a variety of age (from 18- to 46-year-old) to evaluate the 
fetal head station at the onset of the second stage of labor using trans
perineal ultrasound. These images were sourced from three medical 
institutions affiliated with two universities: Nanfang Hospital and Zhu
jiang Hospital (both at Southern Medical University), and The First 
Affiliated Hospital of Jinan University (Fig. 2A). The inclusion criteria 
were: singleton pregnancy, at least 37 + 0 weeks of pregnancy and 
longitudinal cephalic fetus presentation. The exclusion criteria were: 
preterm delivery, other than longitudinal cephalic fetus presentation; 
multiple pregnancy, uterine abnormalities, condition after uterus sur
gery, pathological intrapartum cardiotocography and the refusal of the 
patient to participate in the study.

Data division in the challenge: The dataset is organized into three 
subsets: the Training Set, containing 4000 images from 305 patients; 
Testing Set 1, which includes 401 images from 325 patients; and Testing 
Set 2, consisting of 700 images from 545 patients (Table 1).

Ethical compliance: The data collected for this challenge received 
approval from the institutional review boards of Zhujiang Hospital of 
Southern Medical University (No. 2023-SYJS-023), Nanfang Hospital of 
Southern Medical University (No. NFCE-2019–024) and the First Affil
iated hospital of Jinan University (No. JNUKY-2022–019). Informed 
consent was waived because of the retrospective nature of the study and 
the analysis used anonymous medical image data. Informed consent was 
waived because of the retrospective nature of the study and the analysis 
used anonymous medical image data. The data is available under the CC 
BY license, with additional details accessible on Zenodo: the Training set 
at https://zenodo.org/records/7851339, and Testing Sets 1 and 2 at 
https://zenodo.org/records/10969427.

Imaging equipment and protocols: All the images from this study were 
acquired by trained clinicians using Esaote MyLab (Esaote SpA in Italy) 
or ObEye (Guangzhou Lianyin Medical Technology Co., Ltd. in China) 
and following the protocols defined by the International Society of Ul
trasound in Obstetrics & Gynecology guidelines. The transducer was 
prepped by covering it with a surgical latex glove filled with coupling 
gel, then the prepped transducer, after applying gel, was placed between 
labia below the pubic symphysis to obtain a sagittal plane, small ad
justments in the form of lateral movements of the probe were made until 
an image obtained showed clear maternal pelvic (pubic symphysis) and 
fetal (fetal skull) landmarks that did not show any shadows from the 
pubic rami. Most of the images were acquired with a 3.53±0.0525 MHz 
convex probe. The spatial resolution of the ultrasound system is speci
fied by the manufacturer to less than 2 mm. The overall geometric in
accuracy of a very similar setup due to inherent technical limitations 
was measured to be <2.0 mm laterally, <2.0 mm vertically, <2.0 mm 
longitudinally, and <8.0 mm radially (‘vector length’ or Euclidean ‘3D- 
distance’; the square root of the sum of squares of the three axes) con
sisting of random errors (per single measurement point) and systematic 

Table 1 
Training and Testing dataset properties from all image centres.

Data sets Institution Hospital Scanner Images Subjects AoP

Training SMU Nanfang Hospital ObEye 3743 51 AoP<120◦ (n=3652)
​ ​ ​ ​ ​ ​ AoP≥120◦ (n=91)
​ ​ Zhujiang Hospital Esaote My Lab 257 254 AoP<120◦ (n=79)
​ ​ ​ ​ ​ ​ AoP≥120◦ (n=178)
Testing Set 1 SMU Zhujiang Hospital Esaote My Lab 301 299 AoP<120◦ (n=196)
​ ​ ​ ​ ​ ​ AoP≥120◦ (n=105)
​ JNU First Affiliated ObEye 100 26 AoP<120◦ (n=89)
​ ​ Hospital ​ ​ ​ AoP≥120◦ (n=11)
Testing Set 2 SMU Zhujiang Hospital Esaote My Lab 487 487 AoP<120◦ (n=366)
​ ​ ​ ​ ​ ​ AoP≥120◦ (n=121)
​ JNU First Affiliated ObEye 213 58 AoP<120◦ (n=212)
​ ​ Hospital ​ ​ ​ AoP≥120◦ (n=1)

J. Bai et al.                                                                                                                                                                                                                                       Medical Image Analysis 99 (2025) 103353 

4 

https://zenodo.org/records/7851339#.ZEH6eHZBztU
https://www.youtube.com/watch?v=NvP-bT8I1fE&tnqh_x0026;t=
https://www.youtube.com/watch?v=NvP-bT8I1fE&tnqh_x0026;t=
https://github.com/maskoffs/PS-FH-MICCAI23
https://github.com/maskoffs/PS-FH-MICCAI23
https://zenodo.org/records/7861699
https://zenodo.org/records/7851339
https://zenodo.org/records/10969427


errors (effectively, per fraction). The temporal resolution of the device is 
specified to about 27 Hz. These images were in BMP format, anony
mised, and automatically cropped (to remove the header) to a size of 
256 × 256 pixels before distribution. Spatial resolution (in millimeters) 
varied among the images. Image distribution per device is as follows: the 
Training Set contains 3743 images from Esaote MyLab and 257 from 
ObEye; Testing Set 1 includes 100 images from Esaote MyLab and 301 
from ObEye; and Testing Set 2 consists of 213 images from Esaote MyLab 
and 487 from ObEye (Table 1).

Image annotation and quality assessment: The team responsible for 
annotations included two proficient physicians and 18 students 
specializing in biomedical studies. Before commencing their tasks, an
notators received comprehensive training that involved familiarizing 
them with the structures of PSFH and the key aspects of ultrasound 
images. This training was facilitated through a combination of online 
sessions and in-person guidance by the physicians. Each annotator was 
assigned 15 test images, which were subsequently assessed by the 
physicians. If the annotations were deemed inadequate, the images were 
returned to the respective student for refinement. Annotators were 
instructed to utilize the pencil tool in Pair (https://www.aipair.com.cn/
) for precise pixel-wise segmentation. In instances where the contours 
appeared fragmented or discontinuous, annotators were instructed to 
ensure that the contours maintained a complete elliptical shape. This 
instruction was essential considering the ultimate clinical application’s 
requirement to calculate AoP based on the segmented PSFH contours. 
The final segmentation ground truth was represented by a three-color 
image, where red pixels denoted PS, green pixels represented FH, and 
black pixels indicated the background. During the official annotation 
phase, each image was annotated by two annotators. Any overlapping 
pixels annotated by both annotators were further reviewed and adjusted 
by a highly experienced physician with a decade of expertise. Here, the 
non-overlapping pixels account for >5% of the total labelled pixels an
notated by two annotators, and we believe that physicians need to make 
modifications. Note: Dropped artifacts in ultrasound images can signif
icantly impact the quality and accuracy of the images, leading to po
tential errors in annotation. To evaluate the quality of segmentation, 
both intra-annotator and inter-annotator variabilities were assessed 
using 40 images, each annotated twice by three different annotators 
(including one experienced clinician and two trained raters) on separate 
occasions. These variabilities were quantified using the PSFH Dice score 
calculated with respect to ground truths of our dataset (Table 2).

Data covers all scenarios of fetal head stations: Fetal head station can be 
measured objectively by AoP to assess current status and as a baseline 
for longitudinal measurements. Head station should be assessed trans
perineally, not transabdominally. AoP (in degrees) ranging from 84◦ to 
170◦ is equivalent to head station expressed in centimeters, from –3 cm 
to +5 cm (direct conversion is possible), and has the potential to link 
ultrasound data to traditional assessment by palpation (Tutschek et al., 
2013). It can also help to predict whether operative vaginal delivery is 
likely to be successful. An AoP≥120◦ significantly correlates with a high 
probability of spontaneous vaginal delivery (Dall’Asta et al., 2019). The 
AoP distribution is structured as follows: AoPs range from 50◦ to 180◦

and the ratio of AoP≥120◦/AoP<120◦ is 269/3731 in the Training Set 
(Fig. 2B); AoPs range from 60◦ to 160◦ and the ratio of 
AoP≥120◦/AoP<120◦ is 116/285 in the Testing Set 1 (Fig. 2C); and 
AoPs range from 60◦ to 180◦ and the ratio of AoP≥120◦/AoP<120◦ is 
122/578 in the Testing Set 2 (Fig. 2D) (Table 1). This detailed dataset 
structure allows for robust training and evaluation of automatic seg
mentation algorithms in real-world clinical applications.

2.3. Participating teams

A total of 193 participants (from 19 countries) spanning both in
dustry and academia registered for this challenge, initially submitting 
179 solutions on Testing Set 1. The top ten participants were invited to 
compete in an on-site completion on Testing Set 2. Subsequently, we 
received detailed descriptions of algorithms from 8 teams:

• Angle_avengers: Köhler et al. implemented a solution based on nnU- 
Net (Isensee et al., 2021), a versatile framework known for its 
adaptability across various datasets and consistent top results in se
mantic segmentation. They enhanced nnU-Net by incorporating re
sidual connections within the encoder and introducing an advanced 
data augmentation strategy. This strategy not only improves existing 
techniques but also includes innovative augmentation methods. 
Their experimental setup processed full-resolution 2D images 
through a standard network configuration with a batch size of 49 and 
a patch size of 256 × 256 pixels, using z-score normalization. They 
trained over 1000 epochs, building a strong foundation for further 
enhancements. The culmination of their methodology was an 
ensemble of models developed through 5-fold cross-validation, 
designed to deliver refined predictions, adhering strictly to the 
default nnU-Net protocol and necessary image format conversions.

• Aloha: Elbatel et al. adapted the Segment Anything Model (SAM) 
(Kirillov et al., 2023) specifically for enhancing ultrasound imaging 
by increasing resolution to 512 × 512 pixels (Huang et al., 2024; Ma 
et al., 2024; Mazurowski et al., 2023). They enriched the training 
dataset using a variety of data augmentation techniques from the 
MONAI library, including horizontal flipping, Gaussian noise, blur
ring, random zooming, and affine transformations. The team 
employed a low-rank (LoRA) fine-tuning strategy using a pre-trained 
Vision Transformer (ViT-h) model from the SA-1B natural imaging 
dataset, with encoder parameters fixed during training. They incor
porated a warm-up phase and used the AdamW optimizer to adjust a 
weighted combination of cross-entropy and dice losses, favoring dice 
loss with a weight of 0.8 over 400 epochs per fold. For inference, they 
utilized the encoder from the frozen ViT-h model and applied hori
zontal flipping as test-time augmentation to double the prediction 
count per model. The methodology involved alternating between 
five sets of trained LoRA parameters to produce ten predictions per 
image, which were then combined using a soft ensemble method to 
enhance robustness. The final post-processing step focused on 
isolating the largest connected component from each detected 
object.

• QiuYaoyang: Qiu and Guo utilized UperNet with a ResNet101 
backbone for advanced image segmentation tasks (Ruiping et al., 
2024). UperNet’s architecture, which includes a Feature Pyramid 
Network (FPN) and a Pyramid Pooling Module (PPM), is designed for 
multi-scale feature integration and global contextual information 
synthesis. This setup significantly enhances the model’s ability to 
handle complex scenes and objects. Additionally, their network 
features a decoder that refines and upsamples features to improve 
segmentation precision. In their preprocessing strategy, Qiu and Guo 
normalized the data and utilized a range of augmentation tech
niques, such as random rotation, resizing, horizontal flipping, 
Gaussian noise addition, and blurring. They introduced Weighted 
Dice loss, focusing on image boundary areas to improve segmenta
tion accuracy. To augment the model’s generalization capabilities, 
they trained on a large dataset of 4000 images, developing a robust 
and effective segmentation model capable of handling various im
aging conditions.

• NKCGP: Chen et al. enhanced the U-net architecture specifically for 
complex ultrasound image analysis (Chen et al., 2023) by increasing 
its depth to 15 layers, which includes seven down-sampling and 
seven up-sampling stages. Within this architecture, each convolu
tional module consists of two 3 × 3 convolution layers, followed by 

Table 2 
PSFH Dice scores calculated with respect to ground truths of our dataset.

Clinician Trained rater 1 Trained rater 2

1st 89.04±0.07 87.36±0.05 85.20±0.17
2nd 90.02±0.12 88.86±0.05 88.58±0.12
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batch normalization and LeakyReLU activation. The number of fil
ters in these layers scales symmetrically from 64 to 1024 and then 
reduces back to 64, ensuring a balanced distribution of parameters 
throughout the network. A significant enhancement in their design is 
the integration of a squeeze-and-excitation (SE) block between the 
encoder and decoder, which recalibrates the feature maps to 
emphasize more relevant image areas, thus boosting the model’s 
contextual sensitivity. Additionally, they implemented deep super
vised constraints during the decoding phase to increase the accuracy 
of the output prediction masks. For their training strategy, Chen et al. 
utilized binary cross entropy as the loss function and the Adam 
optimizer with an initial learning rate of 1e-3. They conducted 
training over 50 epochs with a batch size of 12, incorporating 
cross-validation with 20% of the data reserved for validation. This 
comprehensive training regimen was designed to enhance model 
performance and ensure effective generalization across various ul
trasound imaging conditions.

• UCD_Med: Wang et al. adopted a novel approach by coupling a U- 
Net architecture with a pre-trained Mix Transformer encoder(Wang 
et al., 2022a), specifically the MiT-B0 model derived from the 
ImageNet dataset, to advance image segmentation capabilities. Their 
preprocessing regimen included pixel normalization and an array of 
data augmentation techniques aimed at enhancing model robustness 
and generalizability. These techniques encompassed random rota
tion within a range of -25◦ to 25◦, vertical flipping with a probability 
of 0.3, horizontal flipping with a probability of 0.5, and coarse 
dropout, also set at a probability of 0.5. During the training phase, 
the focus was on minimizing a weighted sum of cross-entropy and 
Dice losses, which effectively balances the trade-off between class 
imbalance handling and boundary precision. The training was con
ducted over 20 epochs, with each batch comprising 10 images, and 
utilized a steady learning rate of 1e-4. This strategy was carefully 
designed to optimize the integration of the transformer’s capabilities 
with the spatial decoding strengths of U-Net, ensuring detailed and 
accurate segmentation outcomes.

• Kunkunkk: Sun et al. refined the TransUnet architecture (Lin et al., 
2022) by incorporating an Atrous Spatial Pyramid Pooling (ASPP) 
structure and utilizing a ResNet50 backbone. This advanced archi
tecture starts with a Transformer-based encoder that captures rich 
global contextual information, paired with a CNN-based decoder, 
typically a U-Net, which aids in the precise localization of features. 
The integration of the ASPP module between the encoder and 
decoder is crucial, as it allows for the capture of multi-scale spatial 
information through atrous convolutions. This adaptation enhances 
the model’s ability to handle a diverse range of object sizes and 
shapes, thereby improving versatility across various imaging 

contexts. For data augmentation, they implemented techniques such 
as random rotation and flipping. The training process focused on 
minimizing both cross-entropy and Dice losses over 150 epochs, with 
each batch containing 8 images. A steady learning rate of 0.01 was 
maintained throughout the training to ensure optimal convergence 
and stable progression of learning metrics. This comprehensive 
methodology not only boosts segmentation accuracy but also 
strengthens the model’s adaptability to input data variations.

• CQUT-Smart: Cai et al. introduced the BRAU-Net architecture (Zhu 
et al., 2023), a novel vision transformer model that incorporates a 
four-stage pyramid structure. At the core of this architecture is the 
Bi-Level Routing Attention (BRA), which substantially enhances the 
model to analyze complex visual data. The architecture begins with 
overlapped patch embedding and employs patch merging in later 
stages to progressively reduce the spatial resolution while increasing 
the channel count. Each stage of the BRAU-Net is composed of 
BiFormer blocks, which are designed for efficient feature processing. 
These blocks feature a 3 × 3 depthwise convolution to encode rela
tive positions, a BRA module for targeted location-based attention, 
and a two-layer MLP for in-depth relationship modeling and feature 
embedding. The design of the BRA module is crucial for refining the 
attention mechanism, enabling dynamic adjustment to the spatial 
hierarchies within the image data. For optimization, the Adam 
optimizer was chosen for its effectiveness with sparse gradients and 
its adaptive learning rate capabilities, which are well-suited for 
training sophisticated models like the BRAU-Net. To enhance the 
diversity of the training dataset and improve model generalizability, 
they implemented data augmentation techniques including flips and 
rotations. A distinctive feature of their approach is the tailored 
attention mechanism within the BRAU-Net, which varies the number 
of attention heads at each stage (2, 4, 8, 16) and sets specific ’topk’ 
values, optimizing the model’s focus and efficiency at different levels 
of abstraction.

• aspirerabbit: Ou et al. utilized the U-net architecture (Ou et al., 
2024), known for its distinctive U-shaped configuration, comprising 
a contraction path (encoder) and an expansion path (decoder). The 
encoder reduces dimensionality through successive downsampling, 
capturing essential contextual information, while the decoder em
ploys upsampling to enhance localization accuracy. Integral to this 
architecture are the skip connections that bridge corresponding 
layers across the encoder and decoder, preserving high-resolution 
features. The model was trained using the Dice loss function to 
refine segmentation accuracy. For validation, the dataset was split 
into five folds (F1-F5), with F5 reserved as the test set and F1-F4 used 
for cross-validation during training. Model evaluation focused on 
achieving the highest Dice score in the validation set before 

Table 3 
Overview of algorithms submitted to the PSFH challenge.

Team Name Network Loss Function Post- 
processing

Patch 
Size

Optimizer Initialization Learning 
Rate

Cross- 
Validation

Epochs

angle_avenge 
rs

nnU-Net Hausdorff 
distance and 
Focal

Ensemble 
learning

256 ×
256

Stochastic 
Gradient Descent

Random 1e-2 Yes (5-fold) 1000

Aloha SAM Cross-entropy and 
Dice

Ensemble 
learning

512 ×
512

AdamW Pre-trained 
SAM

1e-4 Yes (5-fold) 400

QiuYaoyang UpNet Dice None 256 ×
256

Adam Random 2e-2 No 40

NKCGP U-Net with Squeeze and 
Excitation Attention

Cross-entropy Ensemble 
learning

256 ×
256

AdamW Random 1e-3 Yes (5-fold) 50

UCD_Med U-Net with Transformer 
(TransU-Net)

Cross-entropy and 
Dice

None 256 ×
256

AdamW Pre-trained 
MiT-B0

1e-4 No 20

Kunkunkk U-Net with Transformer 
(Mix ViT)

Cross-entropy and 
Dice

None 256 ×
256

Stochastic 
Gradient Descent

Pre-trained 
ResNet50

1e-2 No 150

CQUT-Smart U-Net with Transformer 
(BiFormer)

Dice None 256 ×
256

Adam Pre-trained 
plain ViT

1e-3 No 300

aspirerabbit U-Net Dice None 256 ×
256

Adam Random 1e-4 Yes (4-fold) 200
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subsequent testing on the test set. The implementation leveraged the 
PyTorch framework and utilized the Adam optimizer, initialized 
with a learning rate of 0.0001 and a momentum of 0.9. A cosine 
annealing scheduler adjusted the learning rate, with a minimum 
limit set at 0.000001. The batch size was maintained at 4 throughout 
the 200 epochs of training. Images were resized to 256 × 256 pixels 
and subjected to random rotations from -30◦ to 30◦, scaling, and 
normalization, preparing the data for effective training.

Each algorithm is summarized in Table 3. All teams submitted a deep 
learning-based method, most of which were variants based on the U-Net 
architecture (N = 5). The top two teams used complex models, where 
‘angle_avengers’ team used nnUNet and ‘Aloha’ team used Segment 
Anything Model (SAM). Six of the eight (excluding ‘angle_avengers’ and 
‘QiuYaoyang’) used Dice loss, and top four teams used an ensemble 
learning method. Every method used a patch size of 256 × 256 except 
for one team (‘Aloha’) who up-sampled the images to 512 × 512 for 
ensuring compatibility with SAM. Most submissions (6 of 8) used the 
AdamW/Adam optimizer. Half of the submissions used pretrained 
weights to initialize network parameters and cross-validation. A variety 
of different data augmentation strategies were used, and only one team 
did not employ data augmentation at all. Four teams employed pre- 
trained network backbones trained on publicly available datasets, and 
used normalization to preprocess images (Table 4).

2.4. Evaluation

We used Dice similarity coefficient (DSC), Average Surface Distance 
(ASD) and Hausdorff distance (HD) to evaluate the segmentation results 

of PS, FH and PSFH, respectively (Maier-Hein et al., 2024).
DSC measures the amount of overlap between the manual segmen

tation (MS) label and the predicted segmentation (PS) result, and is 
defined as 

DSC =
2|MS ∩ PS|
|MS| + |PS|

ASD provides a comprehensive measure of the surface distance be
tween two objects, capturing both local and global discrepancies in 
shape and location. It is defined as 

ASD =
D(S1, S2) + D(S2, S1)

2 

where S1 and S2 represent the surfaces of two objects being compared, 
and D(S1, S2) denotes that the average of these shortest distances for all 
points on S1, which gives the distance from S1 to S2.

HD is a spatial metric helpful in evaluating the contours of seg
mentations as well as the spatial positions of the voxels. The HD between 
two finite point sets A and B is defined as 

HD(A,B) = max (h(A,B),h(B,A))

h(A,B) = ‖ a − b ‖

where a and b are all pixels within A and B.
In this challenge, we handled missing predictions with a DSC of 0, a 

HD of +∞, and an ASD of +∞.

2.5. Ranking

In order to ensure the fairness and reproducibility of algorithm 
comparison, we utilized the source codes (available at https://github. 
com/maskoffs/PS-FH-MICCAI23) provided by each team to calculate 
nine metrics for each case in Testing Set 2.

Firstly, box-and-whisker plots were employed to represent the dis
tribution of metrics, highlighting the minimum and maximum values, 
the median, and the first (25%) and third (75%) quartiles, as well as 
identifying outliers.

Secondly, we employed five methods to create a ranking for each 
metric, including: 1) calculating the mean and then ranking the aggre
gated scores (MeanThenRank), 2) calculating the median and then 
ranking the aggregated scores (MedianThenRank), 3) calculating the 
ranking and then computing the mean of the aggregated ranks (Rank
ThenMean), 4) calculating the ranking and then computing the median 
of the aggregated ranks (RankThenMedian), and 5) using the Wilcoxon 
signed-rank test to determine rankings based on the number of signifi
cant results (TestBased) (Wiesenfarth et al., 2021).

Thirdly, we applied RankThenMean specifically to the segmentation 
metrics to rank the segmentation performance of the different methods. 
Additionally, RankThenMean was applied to all metrics to determine the 
overall performance rankings. It is important to note that the results of 
the challenge were analyzed using the ChallengeR toolkit (available at 
https://github.com/wiesenfa/challengeR), which is specifically 
designed to calculate and display results for imaging challenges.

Finally, we investigated the stability of the final rankings. This 
involved implementing bootstrapping techniques to examine variations 
in the ranking positions of all teams. The ranking process was iteratively 
applied to 1000 bootstrap samples, each consisting of 700 images from 
Testing Set 2. The median Kendall’s τ correlation coefficient between 
the rankings based on the full assessment dataset and the rankings for 
each bootstrap sample was used to assess the stability of the rankings 
across tasks (i.e., the nine metrics).

2.6. Further analysis

Model design predictors: We conducted a comprehensive evaluation of 

Table 4 
Overview of the data augmentation and pre-processing used in each algorithm.

Team Name Data 
Augmentation

External 
Dataset 
used

Pre-processing Foundation 
model

angle_ave 
ngers

Default 
augmentation 
with stronger 
data 
augmentation 
(sDA5)

No z-score 
normalization

No

Aloha Horizontal 
flipping, 
Gaussian noise, 
blurring, random 
zooming, and 
affine 
transformation

Yes (pre- 
trained 
SAM)

up-sample the 
images to a 
resolution of 
512 × 512

Yes

QiuYaoyang Random 
rotation, random 
resize, horizontal 
flip, Gaussian 
noise, Gaussian 
blur

No normalization 
of the useful 
region

No

NKCGP None No None No
UCD_Med Random 

rotation, 
vertically flip, 
horizontally flip, 
coarse Dropout

Yes (pre- 
trained 
MiT-B0)

normalization No

Kunkunkk Random 
rotation, 
vertically flip, 
horizontally flip

Yes (pre- 
trained 
ResNet50)

None No

CQUT- 
Smart

Random 
rotation, 
vertically flip, 
horizontally flip

Yes (pre- 
trained 
plain ViT)

None No

aspirerabbit Random 
rotation, scaling, 
normalization

No None No
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the design choices implemented by the teams participating in the chal
lenge. Our goal was to ascertain the influence of these design decisions 
on the teams’ overall rankings and performance metrics. We assessed the 
statistical significance of performance variations across different sub- 
tasks by employing the Mann-Whitney U-test. This non-parametric test 
is particularly suited for comparing two independent samples that may 
not adhere to a normal distribution, providing robust insights into the 
differential impacts of various model design choices. We systematically 
analyzed the design choices, categorizing them into two principal 
groups:

Architectural Factors. We explored the impact of different network 
architectures on segmentation performance, focusing on several di
mensions: ① Convolutional Neural Network (CNN) vs. Transformer- 
based models; ② U-Net-like structures vs. others; ③ Foundation 
models (e.g., SAM) vs. others; and ④ Pre-trained models vs. others.

Non-Architectural Factors. We analyzed the influence of non- 
architectural elements on performance enhancement, which are 

divided into four aspects: ① Preprocessing and data augmentation 
techniques (i.e., coarse dropout, flip and rotation, Gaussian noise 
application, non-zero normalization, scaling, and Z-score normaliza
tion); ② Loss functions (Hausdorff distance, Focal, Cross-entropy, and 
Dice losses); ③ Optimizers (Adam, AdamW, and Stochastic Gradient 
Descent); and ④ Postprocessing strategies (Ensemble vs. Non-ensemble 
approaches).

Data variability: To evaluate the robustness of the algorithms, we 
generated various subsets of data to assess performance variations based 
on criteria such as data volume (e.g., Testing Set 1, Testing Set 2, and 
combined), data source or acquisition modality (e.g., SMU with Esaote 
My Lab vs. JNU with ObEye), and clinical impact measures (e.g., 
AoP≥120◦ vs. AoP<120◦). We observed significant variability in rank
ings depending on the specific data subset examined, although ’Aloha’ 
consistently maintained the top-ranking position across all categories.

AoP biometry analysis: Following the segmentation of the PS and FH 
regions, we performed ellipse fitting on each region. For the angle of 

Fig. 3. Segmentation results of 8 submitted methods on the testing set 1. PSFH, pubic symphysis and fetal head; FH, fetal head; PS, pubic symphysis.
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progression (AoP) calculation, we defined two lines: the first being the 
long axis of the PS area, and the second extending tangentially from the 
right endpoint of the PS’s long axis to the right contour of the FH area, as 
described by Bai et al. (2022), Lu et al. (2022a). We calculated the AoP 
for each case in the Testing Set and compared these measurements to 
those determined by the challenge participants, using the absolute dif
ferences (ΔAoP) as a metric.

3. Experimental results

We present a summary of the quantitative evaluation conducted on 
the methodologies implemented by all participating teams. Each method 
was assessed against the ground truth using two distinct testing datasets: 
Testing Set 1, which included 401 2D images, and Testing Set 2, 
comprising 700 2D images, as detailed in Sections 3.1 and 3.2, 

respectively. The results are conveyed through detailed statistical 
analysis. Box-and-whisker plots are used to illustrate the distribution of 
raw data points across the evaluations, highlighting the minimum and 
maximum values, the median, and the interquartile ranges (first quartile 
at 25% and third quartile at 75%), and identifying any statistical out
liers. Throughout the manuscript, results are articulated as ’mean ±
standard deviation.’ This format was selected to provide a clear, concise 
representation of data distribution, facilitating straightforward inter
pretation of variations within the data. Such a presentation ensures that 
findings are accessible and interpretable, aiding in a comprehensive 
understanding of the effectiveness of the various computational 
methods employed.

Fig. 4. Segmentation results of 8 submitted methods on the testing set 2. The evaluation metrics include Dice Similarity Coefficient (A), Hausdorff Distance (B) and 
Average Surface Distance (C). PSFH, pubic symphysis and fetal head; FH, fetal head; PS, pubic symphysis.
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3.1. Segmentation performance on Testing Set 1

Fig. 3 provides a comprehensive visualization of the segmentation 
results achieved by the eight participating teams on Testing Set 1. It 
facilitates a comparison of segmentation accuracy using Dice Similarity 
Coefficient (DSC), Hausdorff Distance (HD), and Average Surface Dis
tance (ASD) metrics across different anatomical structures.

Fig. 3A details the DSC outcomes for three segmentation tasks: PSFH 
(top panel), FH (middle panel), and PS (bottom panel). The DSC results 
display a range from 0.9184 to 0.9437 for PSFH, indicating consistently 
high performance across most teams. For FH, the range is tighter, from 
0.9271 to 0.9498, demonstrating uniformly high precision among all 
methods. In contrast, PS segmentation exhibits a lower performance 
spectrum, with DSC values ranging from 0.8292 to 0.8902, reflecting 
variable accuracy across the teams. Notably, teams ’Aloha’ and 

’UCD_Med’ achieved DSC scores above 0.8500 in PS segmentation, 
distinguishing themselves in this more challenging category.

Fig. 3B presents the HD results, further elucidating the segmentation 
precision. For PSFH, HD values span from 10.380 to 19.967, while for 
FH, they range from 9.3896 to 17.813. The PS segmentation shows HD 
values between 7.0745 and 15.3202. Team ’Aloha’ recorded the lowest 
HD in FH segmentation at 9.3896, indicating superior precision. Addi
tionally, ’angle_avengers’ and ’Aloha’ achieved HD values below 
10.0000 in PS segmentation, highlighting their exceptional accuracy.

Fig. 3C showcases the ASD results, offering another perspective on 
segmentation effectiveness. The ASD ranges for PSFH are from 2.6747 to 
4.0653, for FH from 2.9361 to 4.4663, and for PS from 2.0002 to 3.2702. 
’Aloha’ consistently performed well, maintaining an ASD below 3.0000 
in FH segmentation. In the PS segmentation, ’angle_avengers’, ’Aloha’, 
and ’UCD_Med’ reported ASD values below 2.800, demonstrating their 

Fig. 5. Blob plots for visualizing ranking stability of each algorithm (’Aloha’, ’Angle_avengers’, ’UCD_Med’, ’NKCGP’, ’Kunkunkk’, ’QiuYaoyang’, ’CQUT-Smart’, or 
’aspirerabbit’) across each metric/task (DSC for PSFH, DSC for FH, DSC for PS, ASD for PSFH, ASD for FH, ASD for PS, HD for PSFH, HD for FH, or HD for PS). The 
area of each blob at position (A, rank j) is proportional to the relative frequency A achieved rank j (here across b=1000 bootstrap samples). The median rank for each 
algorithm is indicated by a black cross. 95% bootstrap intervals across bootstrap samples (ranging from the 2.5th to the 97.5th percentile of the bootstrap distri
bution) are indicated by black lines.
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commendable precision.

3.2. Competition on the Testing Set 2

To accurately reflect the performance of each team on Testing Set 2, 

we first analyzed the performance of each method on the segmentation 
evaluation metrics. Secondly, we analyzed the global and local rankings 
of each team across different tasks. Finally, we assessed the stability of 
these rankings.

Quantitative Assessment. Fig. 4 presents a comparison of 

Table 5 
Local rankings (DSC, HD and ASD) for different anatomical structures (PSFH, FH and PS).

Rank DSC HD ASD

PSFH FH PS PSFH FH PS PSFH FH PS

1 Aloha Aloha Aloha Aloha Aloha Aloha Aloha Aloha Aloha
2 UCD_Med angle_avengers UCD_Med angle_avengers angle_avengers angle_avengers UCD_Med NKCGP UCD_Med
3 NKCGP NKCGP NKCGP UCD_Med QiuYaoyang UCD_Med angle_avengers angle_avengers NKCGP
4 angle_avengers UCD_Med angle_avengers Kunkunkk UCD_Med NKCGP NKCGP UCD_Med angle_avengers
5 Kunkunkk QiuYaoyang CQUT-Smart NKCGP NKCGP Kunkunkk Kunkunkk QiuYaoyang CQUT-Smart
6 QiuYaoyang Kunkunkk aspirerabbit QiuYaoyang Kunkunkk CQUT-Smart QiuYaoyang Kunkunkk Kunkunkk
7 CQUT-Smart CQUT-Smart Kunkunkk CQUT-Smart CQUT-Smart aspirerabbit CQUT-Smart CQUT-Smart aspirerabbit
8 aspirerabbit aspirerabbit QiuYaoyang aspirerabbit aspirerabbit QiuYaoyang aspirerabbit aspirerabbit QiuYaoyang

Fig. 6. Ranking of eight algorithms (’Aloha’, ’Angle_avengers’, ’UCD_Med’, ’NKCGP’, ’Kunkunkk’, ’QiuYaoyang’, ’CQUT-Smart’, and ’aspirerabbit’) across three 
metrics/tasks (DSC for PSFH, DSC for FH, and DSC for PS). Left panel: Blob plots for visualizing ranking stability based on bootstrap sampling. Middle panel: Ranking 
heatmaps for visualizing assessment data. Each cell (i, algorithm) shows absolute frequency of test cases in which algorithm achieved rank i. Right panel: Line plots 
for visualizing the robustness of ranking across different ranking methods. Each algorithm is represented by one colored line. For each ranking method (Mean
ThenRank, MedianThenRank, RankThenMean, RankThenMedian or TestBased) encoded on the x-axis, the height of the line represents the corresponding rank. 
Horizontal lines indicate identical ranks for all methods.
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segmentation accuracy using Dice Similarity Coefficient (DSC), Haus
dorff Distance (HD), and Average Surface Distance (ASD) metrics across 
different anatomical structures. Fig. 4A details the DSC outcomes for 
three segmentation tasks: PSFH (top panel), FH (middle panel), and PS 
(bottom panel). The DSC metric exhibited a range of 0.8949 to 0.9269 
for PSFH, 0.9025 to 0.9327 for FH, and a significantly lower range of 
0.7938 to 0.8717 for PS, with ’Aloha’ achieving the highest DSC in both 
FH (0.9327) and PS (0.8717) segmentations. The second-highest DSC in 
FH segmentation was achieved by ’angle_avengers’, and in PS segmen
tation by ’UCD_Med’. Fig. 4B presents the HD results, further delineating 
segmentation quality, with recorded ranges of 13.2230 to 22.8544 for 
PSFH, 11.8598 to 20.2908 for FH, and 8.1839 to 19.0228 for PS. ’Aloha’ 
continued to demonstrate exceptional precision in FH segmentation, 
achieving the lowest HD at 11.8598. Both ’angle_avengers’ and ’Aloha’ 
achieved an HD below 10.0000 in PS segmentation, underscoring their 
significant accuracy. Fig. 4C showcases the ASD results, providing 
deeper insights into segmentation methodology effectiveness, with 
ranges from 3.3511 to 4.9997 for PSFH, 3.7634 to 5.6036 for FH, and 

2.7117 to 4.3605 for PS. ’Aloha’ achieved the lowest ASD in both FH 
(3.7634) and PS (2.7117) segmentations, with ’angle_avengers’ and 
’UCD_Med’ following closely behind in their respective categories.

Global and Local Ranking. Fig. 5 delineates the global rankings of 
the eight participating teams across nine distinct metrics, highlighting 
the performance spread and relative consistency of each team. The 
global ranking is led by ’Aloha’, followed by ’Angle_avengers’, 
’UCD_Med’, ’NKCGP’, ’Kunkunkk’, ’QiuYaoyang’, ’CQUT-Smart’, and 
’aspirerabbit’. This ranking illustrates a clear stratification of team 
performance, with top-performing teams securing higher ranks and 
those underperforming occupying the lower tiers. The ranking vari
ability among the teams is relatively stable, with a maximum positional 
shift of three places observed, indicating a high confidence level in the 
ranking system. ’Aloha’ dominates the global ranking, exhibiting a 
greater than 75% certainty of leading across all metrics, a testament to 
its superior performance and consistency. In contrast, teams ranked 
from second to sixth demonstrated variability and lower certainty levels 
for some metrics, suggesting competitive but inconsistent performances 

Fig. 7. Ranking of eight algorithms (’Aloha’, ’Angle_avengers’, ’UCD_Med’, ’NKCGP’, ’Kunkunkk’, ’QiuYaoyang’, ’CQUT-Smart’, and ’aspirerabbit’) across three 
metrics/tasks (HD for PSFH, HD for FH, or HD for PS). Left panel: Blob plots for visualizing ranking stability based on bootstrap sampling. Middle panel: Ranking 
heatmaps for visualizing assessment data. Each cell (i, algorithm) shows absolute frequency of test cases in which algorithm achieved rank i. Right panel: Line plots 
for visualizing the robustness of ranking across different ranking methods. Each algorithm is represented by one colored line. For each ranking method (Mean
ThenRank, MedianThenRank, RankThenMean, RankThenMedian or TestBased) encoded on the x-axis, the height of the line represents the corresponding rank. 
Horizontal lines indicate identical ranks for all methods.
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across different evaluation criteria. Teams in the middle of the ranking 
displayed moderate fluctuations, reflecting the competitive nature and 
the challenges in maintaining consistent performance across multiple 
metrics. The certainty of ranking decreases towards the lower end, with 
’aspirerabbit’ consistently positioned at the bottom with over 75% 
certainty in six out of the nine metrics evaluated. Table 5 provides a 
detailed breakdown of the local rankings for each metric, where ’Aloha’ 
consistently claims the top spot, underscoring its robust performance 
across different evaluation criteria. In the DSC/ASD metrics, 
’UCD_Med’, ’angle_avengers’, and ’NKCGP’ occupy the second to fourth 
positions, indicating their strong capabilities in achieving precise and 
accurate segmentations. The lower tier, comprised of ’Kunkunkk’, 
’QiuYaoyang’, ’CQUT-Smart’, and ’aspirerabbit’, shows a significant 
performance disparity in these metrics. For the HD metrics, ‘angle_a
vengers’ consistently ranks second, while other teams show a maximum 
shift of 5 positions (i.e., ‘QiuYaoyang’).

Ranking Stability. To determine the significance of a team out
performing another in terms of individual metrics, we employed Rank
ThenMean compared with other approaches, and used the Wilcoxon 
signed-rank test with Holm’s adjustment for multiple testing for each 
metric. The challenge winner ’Aloha’ secured the top position for all 
metrics, and the team ’aspirerabbit’ at the bottom of the rankings for 
most metrics are relatively stable. For DSC (Fig. 6), HD (Fig. 7) and ASD 
(Fig. 8), ’Aloha’ ranks first in segmenting all targets, while ’aspirerabbit’ 
ranks last in segmenting PSFH and FH, and ’QiuYaoyang’ ranks last in 
segmenting PS. High-ranking teams robustly outperform lower-ranked 
teams, and statistical significances were observed when comparing all 
image metrics between a team and another team ranked for each metric. 
However, transitioning from RankThenMean to the four other ranking 
approaches caused substantial changes for the middle-ranked teams. 
When changing from RankThenMean to MeanThenRank, Median
ThenRank, RankThenMedian, and TestBased, respectively, maximum 

Fig. 8. Ranking of eight algorithms (’Aloha’, ’Angle_avengers’, ’UCD_Med’, ’NKCGP’, ’Kunkunkk’, ’QiuYaoyang’, ’CQUT-Smart’, and ’aspirerabbit’) across three 
metrics/tasks (ASD for PSFH, ASD for FH, and ASD for PS). Left panel: Blob plots for visualizing ranking stability based on bootstrap sampling. Middle panel: 
Signifcance maps for visualizing ranking stability based on statistical signifcance. Tey depict incidence matrices of pairwise signifcant test results e.g. for the one- 
sided Wilcoxon signed rank test at 5% signifcance level with adjustment for multiple testing according to Holm. Yellow shading indicates that metric values of the 
algorithm on the x-axis are signifcantly superior to those from the algorithm on the y-axis, blue color indicates no signifcant superiority. Right panel: Line plots for 
visualizing the robustness of ranking across different ranking methods. Each algorithm is represented by one colored line. For each ranking method (MeanThenRank, 
MedianThenRank, RankThenMean, RankThenMedian or TestBased) encoded on the x-axis, the height of the line represents the corresponding rank. Horizontal lines 
indicate identical ranks for all methods.
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shifts are 5 for ‘NKCGP’, 2 for ‘Angle_avengers’ and ‘NKCGP’, 3 for 
‘CQUT-Smart’, and 2 for ‘NKCGP’, ‘aspirerabbit’, ‘QiuYaoyang’, 
‘UCD_Med’ and ‘NKCGP’. Despite these variations, the distribution of 
Kendall’s tau between the ranking based on the full assessment dataset 
and the ranking for each bootstrap sample illustrates that Rank
ThenMean can provide very stable ranking of all algorithms (Fig. 9).

4. Discussion

To our knowledge, this study is the most comprehensive effort to 
date to systematically benchmark a variety of approaches submitted to a 
global challenge focused on PSFHS from 2D intrapartum ultrasound 
images. Developed using the largest and highest-quality dataset of 2D 
intrapartum ultrasound images and annotations currently available, our 
2023 PSFHS Challenge has set a new standard in the field. The bench
marking study encompasses methodologies developed by 8 groups, 
representing a well-curated subset of the 193 participants. While there 
are previous efforts in this area (Bai et al., 2022; Lu et al., 2022a), our 
study significantly contributes in several ways. Firstly, our study is 
among the few that focus on the segmentation of both fetal and maternal 
structures within 2D intrapartum ultrasound images—an endeavor that 
is inherently more challenging due to poor quality of ultrasound images 
caused by multiple factors such as fetal movement, posture, and posi
tion. Secondly, this challenge attracted more participants than any prior 
study and provided a dataset that is not only publicly available but also 
multi-center and multi-device in nature, offering a scale that far sur
passes previous challenges (Rueda et al., 2014; van den Heuvel et al., 
2018). Moreover, the segmentation task in our study is substantially 
more complex than those in established prior challenges, which typi
cally focused on single fetal structures. Our challenge involves the 
class-imbalanced segmentation of multiple targets—simultaneously 
segmenting the fetal skull and maternal pelvis—making it a uniquely 
difficult endeavor. Furthermore, the proposed methods have demon
strated superior robustness and effectiveness, as evidenced by the di
versity of approaches and the range of performance metrics evaluated. 
Lastly, our study delves deeply into the key factors that optimize seg
mentation performance through extensive post-challenge analyses of the 
8 submitted approaches, providing valuable insights into the nuances of 
methodological advancements in this area.

4.1. Results on the whole testing set

When we combine results from Testing Set 1 and Testing Set 2, 
Fig. 10 provides a comparative analysis of segmentation performance on 
DSC, HD, and ASD metrics. Specifically, the DSC metric exhibited a 
range of 0.9034 to 0.9330 for PSFH, 0.9114 to 0.9389 for FH, and 
0.8261 to 0.8785 for PS. The HD metric ranges from 12.1874 to 21.8029 
for PSFH, 10.9601 to 19.3884 for FH, and 7.7799 to 17.6743 for PS. The 
recorded ASD ranges from 3.1048 to 4.6594 for PSFH, 3.4621 to 5.1894 
for FH, and 2.4526 to 3.9286 for PS. Overall, team ’Aloha’ achieves the 
highest DSC and the lowest HD and ASD across the metrics. We also 
compared the results achieved by all teams on Testing Set 1 with those 
on Testing Set 2. The average metrics on Testing Set 1 are as follows: 
DSC for PS is 0.8526, DSC for FH is 0.9371, DSC for PSFH is 0.9286, HD 
for PS is 11.1666, HD for FH is 12.5926, HD for PSFH is 14.5130, ASD for 
PS is 2.8519, ASD for FH is 3.7260, and ASD for PSFH is 3.4430. 
Conversely, the average metrics on Testing Set 2 are: DSC for PS is 
0.8298, DSC for FH is 0.9199, DSC for PSFH is 0.9114, HD for PS is 
13.8598, HD for FH is 15.8062, HD for PSFH is 18.1934, ASD for PS is 
3.7068, ASD for FH is 4.6146, and ASD for PSFH is 4.2158. This 
observation suggests that the segmentation methods of all participating 
teams performed better on Testing Set 1 than on Testing Set 2, likely due 
to the design of our challenge and the distribution of training and testing 
datasets. Specifically, our training data includes 3743 2D ultrasound 
images from Nanfang Hospital of SMU and 257 from Zhujiang Hospital, 
while Testing Set 1 comprises 301 images from Zhujiang Hospital of 
SMU and 100 from the First Affiliated Hospital of JNU. In contrast, 
Testing Set 2 includes 487 images from Zhujiang Hospital of SMU and 
213 from the First Affiliated Hospital of JNU. Additionally, the distri
bution range of AoP corresponding to the training data set spans 60◦ to 
180◦, whereas the AoP distribution for Testing Set 1 ranges from 50◦ to 
160◦, and for Testing Set 2, it extends from 50◦ to 180◦.

The entire test dataset comprises two parts: one part from JNU using 
ultrasound equipment ’ObEye’ and the other from SMU using ’Esaote 
My Lab’. We analyzed the segmentation performance of eight methods 
on these datasets. Fig. 11 presents a comparative analysis of PSFH seg
mentation performance on DSC, HD, and ASD. The metric ranges on the 
SMU set are 0.8977 to 0.9363 for DSC, 12.9248 to 25.5377 for HD, and 
3.2424 to 5.2928 for ASD, whereas on the JNU set, the ranges are 0.9178 

Fig. 9. Violin plots for visualizing ranking stability based on bootstrapping. The ranking list based on the full assessment data is compared pairwise with the ranking 
lists based on the individual bootstrap samples (here b = 1000 samples). Kendall’s tau is computed for each pair of rankings, and a violin plot that simultaneously 
depicts a boxplot and a density plot is generated from the results.
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to 0.9363 for DSC, 10.3308 to 12.4994 for HD, and 2.7583 to 3.2512 for 
ASD. This analysis indicates that the segmentation methods generally 
perform better on the JNU set than on the SMU set, possibly due to 
differences in the training data distribution and ultrasound equipment 
used. Fig. 12 shows the visual comparisons of the segmentation results 
obtained by all 8 submitted algorithms on cases of the JNU and SUM 
sets.

Further, we divided the entire testing set into two parts based on 
AoP: AoP<120◦ and AoP≥120◦ sets. Fig. 13 compiles a comparative 
analysis of the PSFH segmentation performance across these sets, with 
metric ranges on the AoP<120◦ set being 0.9042 to 0.9341 for DSC, 
11.4137 to 21.4999 for HD, and 2.9422 to 4.5668 for ASD. For the 
AoP≥120◦ set, the ranges are 0.9006 to 0.9290 for DSC, 14.9928 to 
22.9014 for HD, and 3.6945 to 4.9952 for ASD. These results suggest 
that overall, the segmentation methods of all participating teams 
perform similarly on both AoP subsets. This finding is likely influenced 

by our challenge design, where the training data contains 3577 images 
with AoP<120◦ and 423 with AoP≥120◦, while the testing data contains 
723 images with AoP<120◦ and 378 with AoP≥120◦.

4.2. Characteristics of top-performing model

We explored the effects of different network architectures on seg
mentation performance. CNNs were used by three teams. A pure trans
former model was employed by the ’Aloha’ team, which substantially 
outperformed the other teams using CNNs (N=3) or hybrid models 
combining CNN and Transformer technologies (N=4) (Fig. 14A). Most 
models adopted U-Net-like architectures (N=5), which were found to be 
less effective than the other two architectures, namely UperNet and SAM 
(Fig. 14B). Out of the eight teams, two used complex methods: nnU-Net 
covers the entire pipeline from preprocessing to model configuration, 
training, postprocessing, and ensembling; SAM is a foundational model 

Fig. 10. Segmentation results of 8 submitted methods on the whole testing set. PSFH, pubic symphysis and fetal head; FH, fetal head; PS, pubic symphysis.
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capable of segmenting any image using zero-shot learning and gener
alizing across domains without additional training. It was observed that 
the team using SAM performed better than the team employing nnUNet 

(Fig. 14C). Four teams used pre-trained models and implemented further 
enhancements to the original architecture in an effort to improve seg
mentation performance (Fig. 14D).

Fig. 11. The PSFH segmentation performance of 8 submitted methods on the testing subsets from two different sources (i.e., SMU (Zhujiang Hospital) (A) and JNU 
(The First Affiliated Hospital) (B)).

Fig. 12. Visual comparison of segmentation results of the 8 submitted methods on the testing data. A) Samples (i.e., AoP<120◦ and AoP≥120◦) collected from SMU. 
B) Samples (i.e., AoP<120◦ and AoP≥120◦) collected from JNU. The ground truths represented by contours and predictions of pubic symphysis (PS) and fetal head 
(FH) are displayed in different colors.
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We also investigated the effects of non-architectural elements on 
performance enhancement. All teams performed data preprocessing or 
data augmentation, which to some extent improved segmentation ac
curacy (Fig. 15A). Five different loss functions were employed by the 
eight teams; however, relying solely on the Dice loss function did not 
yield optimal segmentation results (Fig. 15B). Six of the eight teams used 
the AdamW/Adam optimizer, achieving better results than those using 
the SGD optimizer (Fig. 15C). The top four teams employed an ensemble 
learning method to enhance segmentation accuracy (Fig. 15D).

The winner, ’Aloha’, utilized all network architectural and non- 
network architectural factors known to improve segmentation perfor
mance. Specifically, they were the only team to upscale images from 256 
× 256 to 512 × 512 to ensure compatibility with the transformer-based 
foundational model, SAM. They enriched the training dataset using 
diverse data augmentation techniques from the MONAI library, 
including horizontal flipping, Gaussian noise, blurring, random zoom
ing, and affine transformations. They incorporated a warm-up phase and 
used the AdamW optimizer to adjust a weighted combination of cross- 
entropy and Dice losses. Their methodology involved alternating be
tween five sets of trained LoRA parameters to produce ten predictions 
per image, which were then combined using a soft ensemble method to 
reduce variance and enhance result robustness. The final post- 
processing step focused on isolating the largest connected component 
from each detected object. However, the enhanced performance of SAM 
is accompanied by an increase in model complexity, reflected in a sig
nificant uptick in parameter count, which poses challenges during 
training and deployment. Given the lack of medical resources and 
expertise in underdeveloped areas, we also need to further optimize the 
SAM so that it can be implemented on cost-effective mobile platforms, 
thereby aiding healthcare professionals in enhancing local medical 
practices.

4.3. Clinical impact

Transperineal ultrasound has been recognized as an effective tool for 
determining fetal head station during labor. The Angle of Progression 
(AoP) is a reliable parameter to assess fetal head station during labor. 
Research on the relationship between AoP and fetal head station in
dicates that the corresponding AoP for fetal station ranging from -3.0 to 
5.0 spans from 84◦ to 170◦. In our study, the AoP range for the training 
dataset was 60◦ to 180◦, for training dataset 1 it was 50◦ to 160◦, and for 
training dataset 2 it was 50◦ to 180◦. The AoP for each image in the 
testing sets was calculated using all labels (excluding the background) 
and compared to the AoP determined by each participant in the chal
lenge. The differences in AoP (ΔAoP) across testing sets 1 and 2 and the 
combined set (1+2) ranged from 5.6890–8.7844◦, 8.2620–10.7620◦, 
and 7.3250–10.0545◦, respectively (Fig. 16). These observations indi
cate that the average ΔAoP of all participating teams is less than 11◦, 
corresponding to a change in fetal station of approximately 1.0 
(Tutschek et al., 2013).

4.4. Limitations of the PSFHS challenge

The dataset utilized in this study encompasses a broad spectrum of 
fetal positions, albeit with notable imbalances in the distribution of data 
across different AoPs and variations in image acquisition across hospi
tals and devices. Specifically, the dataset exhibits a significant disparity 
in the number of images with AoP less than 120◦ (4594 images) 
compared to those with AoP equal to or greater than 120◦ (507 images), 
despite the observed similarity in performance metrics. This imbalance 
is crucial for clinical decision-making, particularly in predicting delivery 
mode, and underscores the need for careful consideration in model 
development and validation.

Fig. 13. The PSFH segmentation performance of 8 submitted methods on the two subsets (i.e., AoP<120◦ (A) and AoP≥120◦ (B)) of the whole testing dataset (set 1 
and 2).
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Furthermore, the dataset’s geographical and methodological homo
geneity, limited to Guangdong Province of China and two specific types 
of equipment, restricts the generalizability of the models developed. The 
exclusion of data from diverse regions and countries, along with varia
tions in imaging protocols and operator experience, limits the applica
bility of the findings to a narrow context (Zhou et al., 2023). This 
limitation is particularly pertinent in the context of global healthcare 
disparities and the need for models that can be adapted to different 
clinical settings and imaging conditions (Ghi et al., 2022; Ramirez 
Zegarra et al., 2024; Vesal et al., 2022).

The variability in image quality, attributed to the diverse operator 
experience, is a critical factor that could influence the segmentation 
algorithms’ performance. Despite this, the study’s findings suggest that 
both nnUNet and SAM demonstrated robust performance across the 
dataset. This observation, while encouraging, underscores the need for 
further investigation into the impact of image quality on algorithm 
performance and the development of strategies to mitigate these effects.

The further study’s focus on the development of models that are 
computationally efficient and scalable, with an eye towards imple
mentation on cost-effective mobile platforms, reflects a commendable 
effort to address global healthcare challenges. However, the goal of 
refining SAM through knowledge distillation to enhance its applicability 
on less sophisticated hardware is a significant undertaking that requires 
careful consideration of the trade-offs between model performance and 
computational requirements.

The primary clinical objective of the study, which involves seg
menting targets, fitting ellipses to these segments, and calculating the 
AoP, presents a unique challenge in the accuracy of AoP estimation, 
primarily due to the ellipse fitting step. The potential for errors in 
landmark determination and subsequent AoP calculation due to ellipse 

fitting inaccuracies highlights the need for further refinement in the 
segmentation and fitting algorithms to improve the overall accuracy of 
the AoP estimation process.

Lastly, the absence of data on the mother’s final mode of delivery 
precludes the prediction of delivery mode solely from ultrasound images 
and parameters, which is a limitation that could be addressed through 
future studies that incorporate this critical clinical outcome.

4.5. Future direction

PSFHS2023 has set out to advance the state-of-the-art in PS and FH 
segmentation for labor progression assessments. While the results are 
promising, these tasks have not yet been solved during this challenge. 
The dataset only provided 2D static images containing FH and PS (i.e., 
standard plane). Labor assessment via ultrasound videos maybe more 
challenging (Cai et al., 2020; Qiu et al., 2024). The positive reception to 
PSFHS2023 has spurred the development of the Intrapartum Ultrasound 
Grand Challenge (IUGC) 2024 of MICCAI 2024 (https://codalab.lisn. 
upsaclay.fr/competitions/18413) which aims to expand the challenge 
beyond static 2D images to more unexplored regions of ultrasound video 
close to clinical applications (Alsharid et al., 2022; Li et al., 2021; 
Sharma et al., 2021). Furthermore, addressing the limitations in data 
preparation and two-stage biometry discussed earlier will enhance the 
analysis of future challenges.

Lastly, we have released the whole testing set and the source code of 
this challenge teams. This offer opportunities to validate and enhance 
the statistical robustness of the challenge’s conclusions, enabling other 
researchers to compare their methods with the results of PSFHS2023.

5. Conclusion

While intrapartum ultrasound-based labor progress assessments 
have become a clinical reality, the PSFHS Challenge represents a key 
advance in automated intrapartum ultrasound image analysis for labor 
assessment. This challenge marks the first multicenter challenge with a 
substantial dataset, serving as a catalyst for further innovation in 
intrapartum care. Participants demonstrated their ability to segment PS 
and FH, demonstrating high DICE and low HD and ASD. These 
achievements highlight the potential of deep learning for intrapartum 
ultrasound image segmentation. However, it is important to recognize 
that the clinical applicability of automated labor assessment may not be 
fully captured by segmentation metrics alone. Nonetheless, these sig
nificant advances hold the promise of reducing reliance on traditional 
manual image analysis and increasing the efficiency of labor assessment.

Code availability

Evaluation code used within the challenge, along with example 
notebooks can be found at the following repository: https://github. 
com/lanesra10/FH-PS-AOP-grandchallenge. Code used for running the 
eight methods is available at https://github.com/maskoffs/PS-FH 
-MICCAI23).
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Fig. 14. Comparative summaries of the PSFH segmentation performance of the 
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CNN methods and three hybrid methodologies with statistical significance. B) 
Two non-UNet-like methods outperformed the six UNet-like methods with 
statistical significance. C) Both of Segment Anything Model (SAM) and nnUNet 
notably exceeded the performance of the other six contenders. Importantly, 
SAM achieved a statistically significant lead over nnUNet. D) Four solutions 
utilizing pre-trained models surpassed these methods without pre-trained ele
ments with statistical significance.
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Appendix: Participation rules and prize policies

To ensure fairness and transparency in PSFHS Challenge, organizers, 
data providers, and contributors were prohibited from participating in 
the challenge since data providers and organizers had access to the data, 
including the test set ground truth. However, members affiliated with 
the organizers’ institutes were allowed to participate but not eligible for 
awards and not listed in leaderboard.

Teams receiving a prize had to provide their source codes and pre
sent their methodology at MICCAI 2023, sign all necessary prize 
acceptance documents, and submit a detailed paper outlining their 
methods. Additionally, participants committed to citing both the data 
challenge paper and this challenge overview paper in subsequent pub
lications, whether scientific or non-scientific. The challenge results and 
rankings were publicly announced after the test phase concluded. The 
top seven teams were awarded a total of 10,000 ¥, with the following 
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