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Abstract. In the childbirth process, traditional methods involve inva-
sive vaginal examinations, but research has shown that these methods
are both subjective and inaccurate. Ultrasound-assisted diagnosis offers
an objective yet effective way to assess fetal head position via two key
parameters: Angle of Progression (AoP) and Head-Symphysis Distance
(HSD), calculated by segmenting the fetal head (FH) and pubic symph-
ysis (PS), which aids clinicians in ensuring a smooth delivery process.
Therefore, accurate segmentation of FH and PS is crucial. In this work,
we propose a sparse self-attention network architecture with good per-
formance and high computational efficiency, named DSSAU-Net, for the
segmentation of FH and PS. Specifically, we stack varying numbers of
Dual Sparse Selection Attention (DSSA) blocks at each stage to form a
symmetric U-shaped encoder-decoder network architecture. For a given
query, DSSA is designed to explicitly perform one sparse token selec-
tion at both the region and pixel levels, respectively, which is beneficial
for further reducing computational complexity while extracting the most
relevant features. To compensate for the information loss during the up-
sampling process, skip connections with convolutions are designed. Ad-
ditionally, multiscale feature fusion is employed to enrich the model’s
global and local information. The performance of DSSAU-Net has been
validated using the Intrapartum Ultrasound Grand Challenge (IUGC)
2024 test set provided by the organizer in the MICCAI IUGC 2024 com-
petition1, where we win the fourth place on the tasks of classification and
segmentation, demonstrating its effectiveness. The codes will be available
on GitHub.

Keywords: DSSAU-Net · DSSA · Skip Connection · Multiscale Feature
Fusion.

1 Introduction

Difficult labor is a major cause of maternal mortality and morbidity, referring to
situations where, despite strong uterine contractions, parts of the fetus do not
pass through the birth canal. Therefore, during labor, to prevent such occur-
rences, the position of the fetus needs to be monitored repeatedly. Traditional
1 https://codalab.lisn.upsaclay.fr/competitions/18413#learn_the_details
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vaginal examinations are subjective and potentially invasive [2, 7], and some
related methods are difficult to perform reliably [8]. The advent of ultrasound-
assisted diagnosis has provided a non-invasive, accurate alternative for assessing
fetal position and cervical dilation, gradually gaining acceptance in obstetrics [9].
Some studies [1, 11, 12, 14] have shown that intrapartum ultrasound assessment
can help more accurately evaluate the positions of the fetal head and the pubic
symphysis. The International Society of Ultrasound in Obstetrics and Gynecol-
ogy recommends ultrasound assessment before considering instrumental vaginal
delivery or suspecting delayed labor. Two reliable ultrasound parameters—the
angle of progression (AoP) and the head-symphysis distance (HSD)—are used
to predict the outcome of instrumental vaginal delivery [10].

In ultrasound-assisted diagnosis, the AoP and HSD are key parameters for
assessing the progress of labor. These parameters rely on the segmentation of
the fetal head (FH) and pubic symphysis (PS), aiding clinicians in real-time
monitoring of the fetal delivery status. Therefore, many methods have begun
to focus on improving the segmentation performance of FH and PS. For exam-
ple, the Fetal Head–Pubic Symphysis Segmentation Network (FH-PSSNet) [6]
uses an encoder-decoder framework, which incorporates a dual attention mod-
ule, a multi-scale feature screening module, and a direction guidance block, for
automatic AoP measurement. The Dual-path Boundary-guided Residual Net-
work (DBRN) [5] integrates a multiscale weighted module (MWM), an enhanced
boundary module (EBM), and a boundary-guided dual-attention residual mod-
ule (BDRM) to address the challenges of implementing fully automated and
accurate FH-PS segmentation in cases of low contrast or ambiguous anatomical
boundaries. Additionally, BRAU-Net [3] uses only region-level sparse tokens for
FH-PS segmentation, which is not robust enough for small targets due to speckle
noise, ultrasound artifacts, and blurred target boundaries.

In contrast to these methods, we consider combining a sparse attention mech-
anism with convolution and adopting a multiscale feature fusion approach to
achieve more effective segmentation of FH and PS. To this end, in this paper,
we propose a novel U-shaped network architecture with sparse self-attention,
termed DSSAU-Net, for the segmentation of the FH and PS. Specifically, the
adopted sparse self-attention, derived from the idea of concentrating tokens at
both region and pixel levels [16, 18], is a content-aware, dynamic mechanism,
which is explicitly designed as dual selection operations and has been used in
our other unpublished work. We call this sparse mechanism Dual Sparse Selection
Attention (DSSA). DSSA significantly reduces computational complexity while
extracting more accurate features. Additionally, to effectively extract multiscale
features, inspired by UperNet [15] and Pyramid Pooling Module (PPM) [17],
we stacked the building blocks constructed with this attention mechanism into
a symmetric U-shaped encoder-decoder structure, in which the feature maps
of different resolutions from the decoder component are fused to yield better
segmentation results. Finally, we conduct experiments on the Intrapartum Ul-
trasound Grand Challenge 2024 dataset and verify the superiority of our method.
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The remainder of this paper is organized as follows: Section 2 provides a
detailed description of the proposed methods. Section 3 reports and analyzes the
experimental setup and results. Section 4 provides discussion of the experimental
results. Section 5 presents our conclusion.

2 Method

In this section, we will first introduce the attention mechanism used in DSSAU-
Net: Dual Sparse Selection Attention (DSSA). Next, we will provide a detailed
description of the core module, the DSSA block, we will provide a detailed de-
scription of the core module, the DSSA block, which is built upon this attention
mechanism. Finally, we will outline the overall architecture of the network.
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Fig. 1. Illustration of dual sparse selection attention (DSSA). DSSA performs twice
sparse token selections at both the region and pixel levels, which can reduce computa-
tional complexity while extracting the most relevant features.

2.1 Dual Sparse Selection Attention (DSSA)

The core idea of DSSA is to explicitly perform sparse token selections at both
region and pixel levels. It involves three main steps. First, for a given region-level
token where the pixel-level token is located, mostly relevant regions are selected
and irrelevant ones are filtered out according to the scores of attention matrix
Ar between region-level query Qr and key Kr. Second, for a given pixel-level
token, mostly relevant pixels are selected, and irrelevant ones are filtered out
by the scores of attention matrix Ap between pixel-level query Qp and key Kp.
Finally, the output matrix O is computed by matrix multiplication between the
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normalized attention matrix Ap and the pixel-level value Vp. The conceptual
diagram of DSSA is shown in Fig. 1. Following BiFormer [18], for a given input
image X of size H × W × C, we divide the image into S × S non-overlapped
regions, and obtain the region image Xr ∈ RS2×HW

S2 ×C . Then, the region tokens:
query, key, value, Q,K,V ∈ RS2×HW

S2 ×C , can be derived with linear projections:

Q = XrWq,K = XrWk,V = XrWv. (1)

where S presents the number of regions, r indicates that a token is region-level,
Wq,Wk,Wv ∈ RC×C are corresponding projection weight matrices for the
query, key, value, respectively.

As for the region-level sparse token selection, each region-level token query
Qr ∈ RS2×C and key Kr ∈ RS2×C can be derived by averaging all the pixel-
level tokens on the region token Q and key K. The attention map Ar ∈ RS2×S2

between region-level queries Qr and keys Kr is obtained through matrix multi-
plication, representing the semantic relevance between regions. Then, we employ
a top-k1 operation to select the k1 most relevant regions for each region contain-
ing a given pixel-level token and record their indices in Ir ∈ NS2×k1 . The process
is described as follows:

Ar = Qr(Kr)⊤, (2)

Ir = topkIndex(Ar). (3)

To fully leverage the GPU’s acceleration capabilities, the filtered region-level
tokens need to be gathered back into a matrix.

Kg = gather(K, Ir),Vg = gather(V, Ir), (4)

where Kg,Vg ∈ RS2× k1HW

S2 ×C are gathered key and value tensors, which will be
further used to the pixel-level sparse token selection.

Concerning the pixel-level sparse token selection, for any pixel-level query in
Q, we compute the relevance (i.e., attention matrix) between this query and the
gathered pixel-level key in Kg, indicated as Ap ∈ RS2×HW

S2 × k1HW

S2 as follows:

Ap = Q(Kg)⊤, (5)

where p means that this token is pixel-level. Additionally, since the first round
of region-level sparse token selection involves an averaging operation within a
region, which may retain noise features due to the overall high relevance. This
could negatively impact the model’s ability to effectively extract features. There-
fore, in Ap, we perform a second round of pixel-level sparse token selection using
a top-k2 operation, which not only selects the k2 most relevant tokens but im-
plicitly removes noises. The values and indices corresponding to the selected
tokens are stored and denoted as AP ∈ RS2×HW

S2 ×k2 and IP ∈ NS2×HW
S2 ×k2 ,

respectively:
IP = topkIndex(Ap), (6)

AP = topkValue(Ap), (7)
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where k2 is determined by the scaling factor λ:

k2 = λ
k1HW

S2
. (8)

Similarly, to leverage GPU acceleration, Vg is gathered based on IP to form
Vgg ∈ RS2× k1HW

S2 ×k2×C :

Vgg = gather(Vg, IP ). (9)

Finally, Vgg is weighted with AP . Additionally, to preserve more fine-grained
information beneficial for pixel-level segmentation, we add a local context en-
hancement term (LCE(V)) to the final output O, which is a 5 × 5 depth-wise
convolution:

O = Attention(AP ,Vgg) + LCE(V). (10)

2.2 DSSA Block

Based on this novel concept of DSSA attention, we can construct the core block
of the model, the DSSA block, as shown in Fig. 2(b). Specifically, a 3× 3 depth-
wise convolution is first used to encode relative positional information, followed
by a layer normalization. DSSA is then applied to compute attention, followed
by another a layer normalization, and the result is fed into a two-layer Multilayer
Perceptron (MLP) module. During this process, three residual connections are
employed to help alleviate the vanishing gradient and enhance the stability of
the model. The DSSA block can be formulated as:

ẑ = DSSA(LN(DWConv(zl−1) + zl−1) + DWConv(zl−1) + zl−1, (11)

zl = MLP(LN(ẑ)) + ẑ, (12)

where z represents the output of each block, while ẑ indicates the output of the
internal modules. l denotes the i-th block.

2.3 DSSAU-Net Architecture

DSSAU-Net is a hybrid CNN-Transformer architecture with the encoder-decoder
structure built upon DSSA blocks, as shown in Fig. 2(a). As for Stage1, it consists
of an overlapped patch embedding layer with two 3×3 convolutions and two
DSSA blocks, which is used to transform the input image X of sizes H ×W × 3
into the resulting feature map X1 of size H

4 × W
4 × C:

X1 = DSSABlock×2(embedding(X)), (13)

in Stage2, a Patch Merging layer is applied to reduce the number of tokens, and
a linear embedding layer is used to increase the dimension C to 2C. Thus, the
size of the feature map X2 output by Stage2, also containing two DSSA blocks,
is H

8 × W
8 × 2C:

X2 = DSSABlock×2(Merging(X1)), (14)
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Fig. 2. (a): The overall architecture of DSSAU-Net, which is a u-shaped hybrid network
and uses a sparse attention mechanism: dual sparse selection attention (DSSA) as a
core building idea to hierarchically design the encoder-decoder structure. Furthermore,
a pyramid pooling module (PPM) is used to fuse multiscale features, which is beneficial
to improve the segmentation performance. (b): The details of the DSSA block.

after that, similar process is repeated twice, the size of the corresponding feature
maps X3 and X4 generated by Stage3 and Stage4 is H

16×
W
16×4C and H

32×
W
32×8C,

respectively, which are formulated as:

X3 = DSSABlock×8(Merging(X2)), (15)

X4 = DSSABlock×2(Merging(X3)). (16)

On the encoder side, the number of blocks in each stage is set to 2, 2, 8, and 2,
respectively.

Since X4 aggregates contextual information from different stages, inspired by
UperNet [15], we use the Pyramid Pooling Module (PPM) [17] to take full ad-
vantage of the rich semantic information contained in X4. On the decoder side,
the dimension of the feature map is fixed to Cd. This setup helps reduce the
number of parameters and ensures that features at different scales are equally
important. Subsequently, the feature map of size H

32 × W
32 × Cd is fed into the

hierarchically built decoder from Stage5 to Stage8. During this process, the fea-
ture map in each stage is processed with DSSA attention and fused with the
feature map of the same resolution from the encoder. The resulting feature map
is then upsampled to the output size of H

4 × W
4 × Cd. The overall process can

be described as:
X5 = DSSABlock×2(PPM(X4)), (17)

X6 = DSSABlock×2(Conv1×1(X3)⊕ Conv1×1(Up2×(X5))), (18)
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X7 = DSSABlock×8(Conv1×1(X2)⊕Up2×(X6)), (19)

X8 = DSSABlock×2(Conv1×1(X1)⊕Up2×(X7)), (20)

where ⊕ presents element-wise addition.
Additionally, to effectively fuse the multiscale features in different stages, X5,

X6, and X7 are upsampled to the same resolution as X8. All these upsampled
feature maps are then concatenated along the channel dimension. After that, a
1×1 convolution layer is applied, followed by 4× upsampling, and another 3×3
convolution layer. Finally, a feature map of resolution H ×W ×Class is output
to predict pixel-level segmentation. The process can be formulated as:

Cat = Concat(Up8×(X5),Up4×(X6),Up2×(X7),X8), (21)

Output = Conv3×3(Up4×(Conv1×1(Cat))). (22)

2.4 Loss Function

We adopt a hybrid loss function to train DSSAU-Net, combining dice loss (Ldice)
and cross-entropy loss (Lce). The dice loss helps alleviate class imbalance prob-
lems, while the cross-entropy loss ensures accurate pixel classification. These
losses are defined as follows:

Ldice = 1−
2
∑N

i=1 pigi∑N
i=1 pi +

∑N
i=1 gi

, (23)

Lce = − 1

N

N∑
i=1

[gi log(pi) + (1− gi) log(1− pi)] , (24)

L =
1

2
(Ldice + Lce), (25)

where pi is the predicted probability of the i-th pixel, and gi is the ground truth
of the i-th pixel.

3 Experiments and Results

3.1 Datasets

We conduct experiments on the competition dataset. The original dataset con-
sists of 2,575 training images and 40 validation images. During training, all
images are resized to 256× 256.
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3.2 Metrics

In this work, we employ three primary evaluation metrics to measure the segmen-
tation performance of the model, namely the Dice Similarity Coefficient (DSC),
the Hausdorff Distance (HD), and the Average Surface Distance (ASD). The
specific calculations are presented as follows:

DSC(A,B) =
2|A ∩B|
|A|+ |B|

, (26)

HD(A,B) = max

(
max
a∈A

(
min
b∈B

∥a− b∥
)
,max
b∈B

(
min
a∈A

∥b− a∥
))

, (27)

ASD(A,B) =
1

2

 1

|A|
∑
a∈|A|

min
b∈|B|

d(a, b) +
1

|B|
∑
b∈|B|

min
a∈|A|

d(b, a)

 . (28)

Additionally, to further demonstrate the effectiveness of our method in the
ultrasound-assisted delivery process, during the final testing phase, we develop
an automated program to calculate the Angle of Progression (AoP) and the
Head-Symphysis Distance (HSD).

3.3 Experimental Settings

This work is conducted on a Geforce RTX 3090 GPU with 24GB of memory.
We meticulously design the experimental details. Specifically, the input images
are resized to a resolution of 256×256, and the number of regions in each DSSA
stage is set to 8×8. In the encoder, the number of channels in each stage is
set to [96, 192, 384, 768], and the Cd of decoder is set to 64. Additionally, the
initial learning rate is set to 1e-4. To improve the model’s generalization ability,
we introduce several data augmentation strategies, such as rotation, flipping,
and contrast adjustment. The backbone network uses weights pre-trained on the
ImageNet dataset. The scaling factor λ is set to 1/8.

3.4 Results

We train our DSSAU-Net on the training set and evaluate the performance of
DSSAU-Net on the validation set mentioned in Subsection 3.1. The evaluation
is conducted using three segmentation metrics: DSC, HD, and ASD, as well as
two key parameters related to ultrasound-assisted diagnosis: AoP and HSD. The
results are presented in Table 1. It can be seen that DSSAU-Net achieves excel-
lent segmentation results, with DSC, HD, and ASD reaching up to 86.43, 31.08,
and 8.39, respectively, and has a low number of parameters and FLOPs. This
reflects the effectiveness of both the designed U-shaped hierarchical network for
the pubic symphysis and fetal head segmentation task and the DSSA mechanism
in reducing computational resource consumption.

To further show the performance of DSSAU-Net, we compare it with the
methods used by other teams in the MICCAI IUGC 2024 competition. The
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performance of classification and segmentation on the test set provided by the
organizer, along with the final rank, is shown in Table 2. Our result wins fourth
place in the classification and segmentation tasks in the competition. It can be
seen that although DSSAU-Net did not achieve the highest final overall ranking,
its performance on the segmentation task is still commendable. DSSAU-Net
ranks second on both the HD and ASD metrics and third on the DSC metric,
achieving an overall second place in the segmentation task. This demonstrates
the strong capability of DSSAU-Net in handling segmentation tasks. However,
its performance on the classification task is suboptimal, but this is in line with
our expectations since our main goal is to develop a more accurate segmentation
network. Overall, although DSSAU-Net performs well on the competition task
and wins fourth place, it still has a large gap compared to the top-ranked team’s
method. These gaps motivate us to continue our efforts to refine the network
architecture and improve feature fusion strategies in future work.

Additionally, we visualize the segmentation results and compare them with
the ground truth, as shown in Fig. 3. One can see that the segmented masks
generated by our approach closely match the boundaries and shape of ground
truth.

Table 1. The segmentation performance of DSSAU-Net on the Intrapartum Ultra-
sound Grand Challenge 2024 validation set with 40 images provided by the organizer.
The FLOPs are calculated with 256×256 input.

Methods AoP(◦) HSD(mm) DSC(%) HD(mm) ASD(mm) Params(M) FLOPs(G)
DSSAU-Net 9.88 10.52 86.34 31.08 8.39 29.25 7.15

Table 2. The performance of classification and segmentation on the test set provided
by the organizer. Our group, CQUT-Smart, adopts the DSSAU-Net and achieves a final
rank of fourth. The symbol ↑ indicates the larger the better. The symbol ↓ signifies the
smaller the better.

Group Classification Segmentation Biometry RankAcc ↑ F1 ↑ AUC ↑ MCC ↑ DSC ↑ ASD ↓ HD ↓ AoP ↓ HSD ↓
ganjie 74.41 75.55 78.02 36.48 84.75 13.00 38.72 10.43 11.45 1
vicbic 56.70 63.06 68.68 12.86 88.57 9.43 28.42 9.49 10.39 2
BioMedIA 66.19 54.22 71.26 21.45 86.33 12.22 41.11 9.16 11.68 3
CQUT-Smart 63.19 67.80 62.25 24.23 85.35 11.07 37.38 10.75 10.79 4
nkdinsdale95 67.89 74.88 75.71 25.19 81.69 14.39 40.44 15.33 15.23 5
baseline 47.99 45.15 49.40 7.58 78.68 22.65 89.10 13.20 19.72 6
hhl hotpot 57.07 69.30 43.83 0 47.67 82.34 242.07 62.45 58.06 7
serikbay 42.93 0 44.10 0 72.63 56.21 134.79 40.14 89.21 8
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Input DSSA-UNet Ground Truth

Fig. 3. The visualization results of DSSAU-Net on the Intrapartum Ultrasound Grand
Challenge 2024 validation set. The red and green indicate the segmentation results of
PS and FH, respectively.

3.5 Ablation Study

In this section, to deeply explore the specific impact of each component of the
DSSAU-Net on overall performance, we follow the above experimental settings
and conduct a series of ablation studies on the provided training set and vali-
dation set. Specifically, we systematically analyze the effects of different factors,
including the number of skip connections, the multiscale feature fusion module,
and the selection of key hyperparameters in the proposed Dual Sparse Selection
Attention.

Effect of the Number of Skip Connections: Skip connection helps com-
pensate for information loss during downsampling, which has been proved by
previous studies [4,13]. However, different network structures have varying com-
plexities, and an excessive number of skip connections may not only be detri-
mental to segmentation performance but also increase the complexity of the
network. Therefore, we conduct ablation experiments at resolutions of 1/4, 1/8,
and 1/16 to explore the impact of different numbers of skip connections on the
performance of DSSAU-Net. The results are shown in Table 3. When the skip
connection is not used, the model has the worst performance on all segmentation
metrics and biometry parameters. As the number of skip connections increases,
the segmentation performance of the model gradually improves. The best per-
formance is achieved when all skip connections are utilized at three resolutions.
This is because multiscale skip connections are beneficial for compensating for
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the spatial information loss caused by downsampling and integrating high-level
semantic information from deeper layers into the corresponding decoder layers,
thereby enhancing segmentation performance. Thus, we report our final results
conditioned on using all skip connections.

Table 3. Ablation study of the number of skip connections.

# Skip Connection Connection Place AoP ↓ HSD ↓ DSC ↑ HD ↓ ASD ↓no skip 1/4 1/8 1/16
0 ✓ 10.18 12.14 85.84 32.90 9.23
1 ✓ 10.05 12.42 86.03 31.55 9.15
2 ✓ ✓ 9.98 11.79 86.11 31.57 8.89
3 ✓ ✓ ✓ 9.88 10.52 86.34 31.08 8.39

Effect of Multiscale Feature Fusion Module: The multiscale feature fu-
sion (MFF) module is the core component of DSSAU-Net used to achieve ac-
curate segmentation. Thus, we design the ablation experiment to analyze its
effectiveness. The results are presented in Table 4. It is evident that compared
to DSSAU-Net without the MFF module, the performance of DSSAU-Net with
the MFF module improves by 0.37, 1.2, and 0.81 in terms of DSC, HD, and
ASD, respectively. Consistent improvement can also be observed with respect
to AoP and HSD. We believe that the reason may be that the shallow feature
maps have higher resolution and contain more local spatial information, while
the deep feature maps have lower resolution and cover rich global semantic infor-
mation. Both of these advantages can be leveraged by the MFF module, thereby
achieving more accurate segmentation.

Table 4. Ablation study of multiscale feature fusion (MFF) module.

Method AoP ↓ HSD ↓ DSC ↑ HD ↓ ASD ↓
DSSAU-Net(w/o MFF) 10.39 12.53 85.97 32.28 9.20
DSSAU-Net 9.88 10.52 86.34 31.08 8.39

Effect of the Number of Top-k Tokens: The dual sparse selection mecha-
nism in DSSA not only significantly reduces computational complexity but also
enables the extraction of accurate features. However, selecting different num-
bers of region-level tokens and pixel-level tokens may impact the performance
of DSSAU-Net. Therefore, we design the ablation study to choose appropriate
k1 and λ values for the region-level tokens and pixel-level tokens. For a fair
comparison, this experiment does not use pre-trained weights. The results are
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presented in Table 5. One can see that when k1 is set to [1, 4, 16, 64], a bet-
ter segmentation performance is achieved compared to [2, 8, 32, 64]. We analyze
that this is because selecting too many regions may introduce more noise tokens,
which is detrimental to learning effective features. Additionally, we fix k1 to [1,
4, 16, 64] and further study the effect of the values of λ. It can be seen that
when setting λ to 1/8, the model can achieve the best performance. There is a
similar observation when k1 is set to [2, 8, 32, 64] and λ is set to 1/8, the model
also performs better compared to other λ values. This is easily understandable
because when fewer tokens are selected during the pixel-level sparse selection,
the model can learn fewer features. Conversely, selecting more tokens introduces
more noise. Moreover, it can be seen from Table 5 that the FLOPs vary sig-
nificantly with different values of λ, demonstrating the advantage of DSSA in
reducing computational complexity. Therefore, we chose a compromise value of
λ as the hyperparameter of the model.

Table 5. Ablation study of the number of top-k tokens.

k1 λ AoP ↓ HSD ↓ DSC ↑ HD ↓ ASD ↓ FLOPs (G)

1,4,16,64
1/4 13.79 16.94 82.61 40.16 10.84 7.17
1/8 13.50 16.89 83.42 38.15 10.41 7.15
1/16 15.24 17.54 82.68 41.62 10.93 7.14

2,8,32,64
1/4 15.57 17.17 82.61 41.60 11.01 7.39
1/8 15.54 17.24 82.73 40.49 10.79 7.35
1/16 15.84 19.16 82.72 42.52 29.25 7.32

4 Discussion

In this paper, we have validated the performance of DSSAU-Net in ultrasound-
assisted delivery. However, From Fig. 3, it can be seen that although DSSAU-Net
has successfully segmented both PS (presentation of the fetal head) and FH (fetal
head), closely aligning with the ground truth, there is still room for improvement
in the precision of edge segmentation. For instance, segmenting the boundaries
between target and background is challenging due to low contrast. Therefore,
enhancing DSSAU-Net’s capability to extract local information and improving
its performance under low-contrast imaging conditions will be the focus of future
work.

5 Conclusion

In this work, we propose DSSAU-Net, a CNN-Transformer hybrid network for
fetal head and pubic symphysis segmentation. The network is constructed by
stacking efficient DSSA blocks, forming symmetrical encoder-decoder structure.
Additionally, we introduce skip connections with convolution operations, and
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a pyramid pooling module to capture richer semantic information. The results
on the challenge dataset demonstrate that our approach is capable of achieving
accurate and efficient medical image segmentation. In future work, we will further
explore more efficient attention mechanisms and investigate the fusion of feature
information across different levels to enhance the model’s ability for both global
and local modeling.

References

1. Bellussi, F., Ghi, T., Youssef, A., Cataneo, I., Salsi, G., Simonazzi, G., Pilu, G.:
Intrapartum ultrasound to differentiate flexion and deflexion in occipitoposterior
rotation. Fetal Diagnosis and Therapy 42(4), 249–256 (2017)

2. Boyle, A., Reddy, U.M., Landy, H.J., Huang, C.C., Driggers, R.W., Laughon, S.K.:
Primary cesarean delivery in the united states. Obstetrics & Gynecology 122(1),
33–40 (2013)

3. Cai, P., Lu, J., Li, Y., Lan, L.: Pubic symphysis-fetal head segmentation using
pure transformer with bi-level routing attention (2023), https://arxiv.org/abs/
2310.00289

4. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-
unet: Unet-like pure transformer for medical image segmentation. In: European
conference on computer vision. pp. 205–218. Springer (2022)

5. Chen, Z., Lu, Y., Long, S., Campello, V.M., Bai, J., Lekadir, K.: Fetal head and
pubic symphysis segmentation in intrapartum ultrasound image using a dual-path
boundary-guided residual network. IEEE Journal of Biomedical and Health Infor-
matics (2024)

6. Chen, Z., Ou, Z., Lu, Y., Bai, J.: Direction-guided and multi-scale feature screening
for fetal head–pubic symphysis segmentation and angle of progression calculation.
Expert Systems with Applications 245, 123096 (2024)

7. Cohen, S., Lipschuetz, M., Yagel, S.: Is a prolonged second stage of labor too long?
Ultrasound in Obstetrics & Gynecology 50(4), 423–426 (2017)

8. Dupuis, O., Ruimark, S., Corinne, D., Simone, T., André, D., René-Charles, R.:
Fetal head position during the second stage of labor: comparison of digital vaginal
examination and transabdominal ultrasonographic examination. European Journal
of Obstetrics & Gynecology and Reproductive Biology 123(2), 193–197 (2005)

9. Fiorentino, M.C., Villani, F.P., Di Cosmo, M., Frontoni, E., Moccia, S.: A review
on deep-learning algorithms for fetal ultrasound-image analysis. Medical image
analysis 83, 102629 (2023)

10. Ghi, T., Eggebø, T., Lees, C., Kalache, K., Rozenberg, P., Youssef, A., Salomon,
L., Tutschek, B.: Isuog practice guidelines: intrapartum ultrasound. Ultrasound in
Obstetrics & Gynecology 52(1), 128–139 (2018)

11. Malvasi, A., Tinelli, A., Barbera, A., Eggebø, T., Mynbaev, O., Bochicchio, M.,
Pacella, E., Di Renzo, G.: Occiput posterior position diagnosis: vaginal examination
or intrapartum sonography? a clinical review. The Journal of Maternal-Fetal &
Neonatal Medicine 27(5), 520–526 (2014)

12. Ramphul, M., Ooi, P.V., Burke, G., Kennelly, M.M., Said, S.A., Montgomery, A.A.,
Murphy, D.J.: Instrumental delivery and ultrasound: a multicentre randomised
controlled trial of ultrasound assessment of the fetal head position versus standard
care as an approach to prevent morbidity at instrumental delivery. BJOG: An
International Journal of Obstetrics & Gynaecology 121(8), 1029–1038 (2014)

https://arxiv.org/abs/2310.00289
https://arxiv.org/abs/2310.00289


14 Z. Xia et al.

13. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part III 18. pp. 234–241. Springer (2015)

14. Rueda, S., Fathima, S., Knight, C.L., et al.: Evaluation and comparison of current
fetal ultrasound image segmentation methods for biometric measurements: A grand
challenge. IEEE Transactions on Medical Imaging 33(4), 797–813 (2014)

15. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for
scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
Computer Vision – ECCV 2018. pp. 432–448. Springer International Publishing,
Cham (2018)

16. Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., Sun, X.: Explicit sparse trans-
former: Concentrated attention through explicit selection (2019), https://arxiv.
org/abs/1912.11637

17. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 2881–2890 (2017)

18. Zhu, L., Wang, X., Ke, Z., Zhang, W., Lau, R.: Biformer: Vision transformer with
bi-level routing attention. In: 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 10323–10333 (2023)

https://arxiv.org/abs/1912.11637
https://arxiv.org/abs/1912.11637

	DSSAU-Net:U-Shaped Hybrid Network for Pubic Symphysis and Fetal Head Segmentation

