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a b s t r a c t

Wireless capsule endoscopy (WCE) produces amounts of redundant images in one examination, which
is very laborious and time-consuming for a physician to review these. It has been extremely needed
for a technique that automatically produces a shortened and informative WCE video summary from
its original video. This paper considers unsupervised WCE video summarization, and casts it as a
sequence-to-sequence learning problem. Our key idea is to learn a deep summarizer network to
minimize information loss between training videos and their summaries, in an unsupervised way.
To this end, we propose a hybrid yet effective unsupervised WCE video summarization method using
long short-term memory (LSTM), variational autoencoder (VAE), pointer network (Ptr-Net), generative
adversarial network (GAN), and de-redundancy mechanism (DM) etc. techniques. The proposed model
termed Adv-Ptr-Der-SUM adopts a generative adversarial framework, consisting of a summarizer
and a discriminator. The summarizer is the VAE-based LSTM architecture with Ptr-Net and DM that
aims to learn the conditional probability of output sequence and provide a compact summary. The
discriminator is another LSTM aimed at distinguishing between the original video and reconstructed
video from the summarizer. The summarizer and discriminator are adversarially trained to optimize
the summarizer and produce optimal WCE video summary. Extensive experiments on our WCE-2019-
Video dataset show that our model can outperform other video summarization approaches by a large
margin in both supervised and unsupervised settings. Also, the proposed model is applied to two public
multimedia benchmark datasets, verifying its effectiveness and generality, and demonstrating that it
can achieve a competitive result.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless capsule endoscopy (WCE) is a new technique avail-
ble for investigation of the digestive tract, particularly the whole
f the small bowel where the conventional endoscopy is unable
o reach [1]. WCE has proved to be an irreplaceable tool in the
iagnosis and management of small bowel disorders since its ap-
roval in 2001 [2]. Before WCE is utilized, completely examining
he entire small bowel is difficult. In contrast to conventional pro-
edures (e.g., push enteroscopy, colonoscopy, and gastroscopy)
o diagnose the gastrointestinal (GI) diseases [1,3], WCE has the
ollowing several advantages [1,4–9], for a complete exploration
f small bowel, that (1) it allows for diagnostic and evaluation

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
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without invasive and pain; (2) it goes through the entire small
intestine without restriction and easily takes endoscopic imaging
of the entire small bowel; (3) the captured video images are
transmitted wirelessly to a data-recording device and then used
to examine off-line later to make diagnostic decisions by clini-
cian; (4) its role has been analyzed and evaluated in many small
bowel diseases such as obscure GI bleeding, Crohn’s disease, GI
polyposis syndromes, and small bowel tumor; (5) it has proved to
be an extraordinarily safe device. Literature [10] reported in 2006
that over 340k capsules have been deployed worldwide with no
reported deaths and with few side effects.

Although the WCE has made much success in noninvasive
GI disease detection, there are still some challenges associated
with this advanced technology. One main problem is that the

CE produces about 55,000 images of the whole digestive tract
uring an examination, which have large amounts of redundant
e.g., high similarity) or uninformative (such as intestinal juice,
ubbled and undigested residue) frames, as illustratively shown
n Input part of Fig. 1. This is very time-consuming and fatiguing
or a physician to review WCE video sequences [11]. Further-
ore, the collected WCE images with a variety of abnormalities
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Fig. 1. Overview of the Adv-Ptr-Der-SUM model. The summary video is selected by the summarizer using pointer network from the input original video. We use
a generative adversarial framework for optimizing the summarizer so as to produce optimal WCE video summary. As shown in the illustration, there are amounts
of redundant or uninformative frames in WCE videos. Top row, some redundant frames with high similarity in original video; Left in bottom row, the summary
produced by our Adv-Ptr-Der-SUM model. In this work, we consider using the proposed de-redundancy mechanism to eliminate redundant frames.
(that is, informative frames containing various GI disease le-
sions) typically account for only a small percentage of the entire
WCE video images [12]. This makes it difficult to find abnormal
and valuable frames quickly. Thus, it is awfully beneficial to
find computer-aided diagnosis method to help clinicians identify
problematic images as quickly as possible, such that it can reduce
clinicians’ workload and improve the efficiency. Moreover, since
he introduction of the first capsule endoscope in clinical practice
i.e., the PillCam R⃝ developed by Given Imaging [1]) in 2001, a
ariety of methods have been proposed, including algorithms for
etecting all types of abnormalities and reducing the reviewing
ime [13], as well as applications of recent artificial intelligence
echniques, specifically machine learning and deep learning, are
eginning to emerge in gastrointestinal endoscopy [14,15]. These
an be implemented and enhance the diagnostic yield of WCE,
roviding the most promising results. However, in actual clinical
ractice, the clinician would always like to confirm the detection
esults generated by the computer techniques and not take any
isk of missing important something in the WCE examination.
ll these problems motivate us to explore new computational
ethods that can provide a compact, shortened, and informative
CE video summary to clinician so as to reduce the time spent in

he examination. We believe that it is critical to explore artificial
ntelligence techniques to processing and analysis of endoscopic
ideo images.
Depending on the extensive and promising application, many

omputer-aided methods have been proposed to classify and
etect various types of WCE diseases. That is, these mainly focus
n identification of one specific abnormality or multiple abnor-
alities on WCE video images, e.g., bleeding [8], polyps [7],

umors [16], and ulcers [17] etc., only for one specific abnormal-
ty, and [6,18–20] for multiple abnormalities. For more details
n computer-aided methods applied to WCE diseases recogni-
ion/detection and analysis, one can refer to [21,22]. However,
hese methods cannot provide the gist of the entire WCE video to
linician, so that important something may be missed in one ex-
mination. To deal with these problems, other approaches aimed
t automatic summarization of medical videos, have also been
roposed to get a hint on the entire semantic content, so as
o save time of clinician inspection, or enable video sequence
nalysis. These existing methods involve non-negative matrix
actorization-based unsupervised WCE video summarization [23–
5], WCE video summarization using the factorization analy-
is based on sliding window singular value decomposition [26],
isualization of multiple consecutive frames and highlight extrac-

R⃝
ion, i.e., Quadview and Quickview modes of Rapid 5 Access

2

software, respectively [27,28], adaptive control [29], epitomized
summarization integrating local context preservation and expec-
tation maximization (EM) learning methods [30], feature extrac-
tion and image registration techniques-based panoramic visual
summaries [31], deep learning-based noisy content removal and
organ segmentation [32], summarizing CE videos into multiple
classes [33], uniform sampling, motion analysis [34–39], similar-
ity [40–42], filter [43], and clustering [44–46]. However, these
methods have their limitations, e.g., for Quadview method, it is
very difficult for clinician to fully perceive the content of more
than four different images simultaneously. Therefore, an auto-
matic summarization method for analyzing and understanding
WCE videos are essential so as to allow for a quick filtering of
undesired content and an easier browsing of the gist.

As Schoeffmann et al. point out, live endoscopic videos con-
tain much highly similar content, exhibiting minimal obvious
shot boundaries, and are also corrupted by unpredictable in-
terruptions [47]. Thus, common shot-detection and key frame
extraction methods like those [48] proposed by Smeaton et al.
for traditional multimedia cannot be used with endoscopic video.
That needs a new key frame extraction approach for this special
medical video domain which we call it medical multimedia video.
In addition to that, as we all know, video summarization is also
a challenging problem in the traditional multimedia user video
field and related technologies have gained increasing attention,
leading to various methods proposed to help efficiently browse,
manage and retrieve video contents and facilitate large-scale
video distilling [49–55]. These are typically based on learning
techniques to summarize video, including unsupervised and su-
pervised methods. And their performance was usually evaluated
on user videos [56,57]. That is, the study subjects of these meth-
ods are user videos rather than medical videos or images. Thus,
in this work, we attempt to propose an effective resolution for
our endoscopic video summarization problem via using these
techniques applied to the traditional multimedia user video.

In this paper, we focus on WCE video summarization, which is
defined as raw unedited video data from patient. Such data often
contains some predictable abnormal patterns (that is, informative
frames), e.g., some abnormal frames including bleeding, tumors,
and ulcers, but is raw and therefore often long and redundant. In
order to eliminate redundant WCE frames and provide a skim for
clinician, we propose a video summarization algorithm for WCE
video summaries. We take into account unsupervised WCE video
summarization and cast it as a sequence-to-sequence (seq2seq)

learning problem. Given a sequence of WCE video frames, our
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oal is to acquire a short representative synopsis, which best
ummarizes the original WCE video.
Our work is inspired by the recent success of applying long

hort-term memory (LSTM) [58], variational autoencoder (VAE)
59], attention mechanism (AM) [60,61] and generative adver-
arial networks (GAN) [62] to user-oriented video summariza-
ion [49,51–53,63–71], as well as coverage mechanism [72] and
ointer network (Ptr-Net) [73] to structured prediction prob-
ems such as text summarization [74–76] and machine trans-
ation [77]. Recently, a similar idea of unsupervised encoder–
ecoder [78] is also applied to video classification and video
aptioning. Also, a cross-layer attention mechanism [79] is used
o model the multi-level information from different convolu-
ional layers, which benefits the task of action recognition. While
ur key idea is to learn a deep summarizer network with de-
edundancy mechanism (DM) to minimize information loss be-
ween training videos and their summarizations, in an unsu-
ervised way. The idea of de-redundancy mechanism is derived
rom coverage mechanism. Our approach consists of a summa-
izer (pointer network) and a discriminator, which use recurrent
eural networks (RNNs) especially LSTMs that excel at modeling
ong-range structural dependencies. We name such an adversarial
earning with pointer network and de-redundancy mechanism for
CE video summarization as Adv-Ptr-Der-SUM.
An illustration of the proposed framework is given in Fig. 1.

he summarizer aims to select key frames. The generator and
iscriminator adversarially learn to enforce both the information
ompleteness and compactness of summaries. This ensures that
he summaries capture enough key video representation from
global perspective rather than a trivial randomly shorten se-
uence. Existing approaches to generating summaries of WCE
ideo do not take advantage of deep learning technique, or
nly use it to feature extraction, e.g., [45]. To the best of our
nowledge, our work is the first to apply long short-term memory
LSTM), variational autoencoder (VAE), pointer network (Ptr-
et), generative adversarial networks (GAN), and de-redundancy
echanism (DM) to WCE video summarization.
Quantitative and qualitative evaluations on our WCE-2019-

ideo dataset, as well as two public benchmarks: SumMe [56]
nd TVSum [57] demonstrate the effectiveness of our proposed
ethod.
In summary, the main contributions in this paper are given as

ollows:

1. We first explore and propose a new approach to unsu-
pervised WCE video summarization by combining varia-
tional autoencoder (VAE), pointer network (Ptr-Net), and
generative adversarial networks (GAN) techniques, which
are typically used to user multimedia videos. These tech-
niques, especially Ptr-Net, are first applied to WCE video
summarization.

2. We first use de-redundancy mechanism (DM) to elimi-
nate redundant frames in both user videos and medical
videos, which is different from the previous proposed var-
ious diversity models. The idea is inspired by coverage
mechanism applied to solving the repetition problem in
text summarization.

3. We present a new dataset, called WCE-2019-Video, that
allows for a repeatable evaluation of WCE video summa-
rization methods. To our knowledge, it is the first dataset
that can be used for future WCE related researches.

The remainder of this paper is organized as follows. Section 2
eviews prior work. Section 3 specifies our approach and training
rocess for WCE video summarization. Section 4 briefly intro-
uces our dataset and gives experimental details and results, and
inally Section 5 presents our conclusion.
3

2. Related work

In the section, we will review the related from the follow-
ing four aspects. (1) problem formulations, (2) traditional ap-
proaches and deep architectures to endoscopic video summariza-
tion, (3) supervised vs. unsupervised techniques for endoscopic
video summarization, (l4) approaches to WCE redundant frames
elimination.

Video Summarization Formulations. In this paper, we will
broadly divide video summarization into user multimedia and
medical multimedia video summarization. Currently, some video
summarization techniques, particularly deep learning techniques,
are typically applied to user multimedia video. In this work, we
explore similar techniques to endoscopic video summarization. In
the multimedia video domain, given an input video, video sum-
marization aims to produce a shortened version that highlights
the representative video frames. Various prior work has proposed
solutions to this problem, including several classical formula-
tions: subset selection [52,64,80], structured prediction [52,53],
sequential decision making [50], and seq2seq learning [49,66,81].
According to the dividing method of problem formulations, our
work is most closely related to seq2seq learning problem, select-
ing some important pieces of information in the original video to
form a compact summary by pointer network. Here, we aim to
select key frames for summarizing a WCE video. To our best of
knowledge, there is no related work applying pointer network to
WCE video summarization so far.

Traditional Approaches and Deep Architectures to Endo-
scopic Video Summarization. Similarly to the traditional ap-
proaches to multimedia video, some generic methods applied
to medical video also mainly focus on four main procedures
to creating a video summary: shot segmentation [82–84], key
frame extraction [44–46,82,83,85–89], similarity measure [45,46,
90] and the generation of summaries. However, except for [45]
which uses Siamese neural network to feature extraction and
similarity measure, existing approaches to generating summary
do not take advantage of deep learning. Moreover, as pointed out
by Schoeffmann et al. [47], common shot detection and key frame
extraction methods cannot be used for these endoscopic videos
containing unedited and highly similar content. Thus, we resort
to a deep architecture that can effectively capture the short- and
long-range dependencies among sequential frames in our WCE
video, so as to derive both representative and compact medical
video summaries.

Supervised vs. Unsupervised Medical Video Summarization.
rom the learning perspective, video summarization methods can
e roughly divided into supervised and unsupervised approaches.
upervised methods use human annotations of key frames during
raining to optimize their models so as to minimize loss with
espect to this ground truth, and finally determine which frames
r shots are more important to be selected. However, for some
ractical applications in a certain domain, it may be impossible
o provide reliable and sufficient human annotations (e.g., w.r.t.
ndoscopic video summarization, to the best of our knowledge, as
f yet, there is no publicly available benchmark). These domains
ave been addressed with unsupervised methods usually using
anually defined heuristic criteria to extract key frames or key
hots [91]. In this work, we explore VAE and GAN to unsupervised
CE video summarization because their properties are well-

uited to our application, such as scalability, easy parallelization,
nd seamless integration with LSTM cells. To the best of our
nowledge, only a few works adopted VAE and GAN to medical
ideo summarization so far. With respect to deep learning and
AN in medical image analysis, readers can refer to [22,92–98].
Approaches to WCE Redundant Frames Elimination. Some

early work has been devoted to WCE redundant frames elimi-

nation and video summarization [23–25,30,37,44,45,85,86,90,99–

shine
高亮
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Table 1
Some abbreviations with the corresponding full names (a). The notations used in our method and corresponding descriptions (b).
(a) List of abbreviations

Abbreviation Full name Abbreviation Full name

WCE Wireless capsule endoscopy RNN Recurrent neural network
Ptr-Net Pointer network VAE Variational autoencoder
GAN Generative adversarial network DM De-redundancy mechanism
LSTM Long short-term memory AM Attention mechanism
seq2seq Sequence-to-sequence GI Gastrointestinal

(b) List of notations

Symbol Description Symbol Description

V Original video L Loss function
v Video frame, a vector ω DM parameters
x Feature of V , a vector E Expectation
n The total number of frames, a scalar h LSTM hidden state
p(s) A probability distribution over a continuous

variable s, e.g., normal distribution
φ Variational parameters

x̂ Feature of reconstruction frames, a vector ∇ Using Stochastic Gradient to update
parameters

s A latent representation of feature of frames, a
latent vector

DKL(·) KL divergence

q(s|x) The probability distribution of observing s
given x, as a probabilistic encoder

θ Generative parameters

p(x|s) The conditional generative distribution for x
given s, as a probabilistic decoder

ϕ GAN parameters
a

D

101] or other medical video summarizations [47,82,83,87,102,
103] . But these methods almost not adopt deep learning tech-
niques and attention mechanism to eliminate large of redundant
frames. Inspired by the recent success of attention mechanism in
video summarization [49,65,66,91] and coverage mechanism [72,
75] for solving the repetition problem of generated text sum-
marization, as well as driven by some much-needed methods to
redundancy reduction for WCE or other medical videos [37,104,
105], a de-redundancy mechanism (DM) is proposed to reduce
the vast redundancy produced in one examination to generate a
compact and informative summary. This de-redundancy mecha-
nism is in fact an auxiliary attention mechanism to keep track
of the attention history and help attention model adjust future
attention. Its thought derives from the coverage model of [72].

3. Methods

In this section, we start by giving a brief overview of the
xistent key techniques employed by our approach. We then
escribe the main building blocks of this work in the following
ections 3.1–3.6. Here we also list some abbreviations with the
orresponding full names across the full paper, as well as a
oncise reference describing the notation used throughout our
ethod in Table 1.
Pointer Network (Ptr-Net) [73] is one kind of special

ttention-based seq2seq neural architecture, in which the de-
oder uses soft attention mechanism as a pointer to select a
ember from the input sequence as the output. By learning the
onditional probability of an output sequence over the input,
tr-Net solves the problem of variable size output sequence, of
hich the size is equal to the length of the input. A typical
eq2seq model consists of two RNNs: an encoder and a decoder.
n Ptr-Net, an encoding LSTM converts the input sequence to
latent representation that is fed to the generating network

decoder). For notation purposes, given input sequences xi and
utput sequences x̂j, let the encoder and decoder hidden states

be he
i and hd

j , and we compute the attention vector at each output
time j as follows:

mj(i) = wT tanh(Whe
i +W0hd

j ), i ∈ (1, . . . , n)
αj(i) = softmax(mj(i)), i ∈ (1, . . . , n)

(1)

where αj(i), derived from mj(i) after softmax normalization, is
an output distribution over the input, telling the decoder where
4

to look to produce the next frame, and w, W , W0 are learnable
parameters. Different from the vanilla seq2seq problem with
attention mechanism, which typically uses the attention distribu-
tion αj(i) to produce a weighted sum of the encoder hidden states
he
i , from which predictions are made and which frame is feed

to the next time step, the Ptr-Net explicitly uses the attention
distribution αj(i) as pointers to the all input frames i:

p(x̂j|x̂1:j−1, x) = αj(i). (2)

For further details on Ptr-Net, please refer to [66] and [73].
Pointer network has been successfully applied to text summariza-
tion [74–76]. Recently there is also a few works [66] attempting
to explore this thought for video summarization. But different
from [66] using Ptr-Net to output tuples of the starting and end-
ing points of selected fragments, we use it to extract important
frames from original video.

Variational Autoencoder (VAE) [59] consists of two neu-
ral networks. One encodes an observed data sample to an un-
observed latent variable , and one decodes the latent variable
back to data space, both of which can be formalized as follows,
respectively:

s∼Enc(x)=qφ(s|x), x̂∼Dec(s)=pθ (x|s). (3)

The VAE regularizes the encoder by imposing a prior over the
latent distribution p(s). It is typical to let the prior variable be
standard normal distribution s∼N (0, I), where I is the identity

matrix. Similarly, pθ (x|s) identifies the conditional generative dis-
tribution for x. qφ(s|x) is the approximation to the posterior of the
generative model pθ (s|x) which is true but intractable. φ and θ are
two sets of parameters, that need to be updated during learning.
More specific details of the VAE technique applied to WCE video
summarization will be given in the corresponding subsection.

Generative Adversarial Network (GAN) [62] is a neural net-
work for estimating generative models via an adversarial process,
in which two models, a generator and a discriminator, are simul-
taneously trained. The generator Gen(s) maps a prior distribution
s to data space, x̂ = Gen(s) with s∼ps(s), while the discriminator
is(x) discriminates between the generated samples x̂ and the

true ones from true observations x, assigning the probability
Dis(x) that x comes from the true data and probability (1− Dis(x))
that x̂ comes from x̂ = Gen(s). The goal of GAN is to find a
generator which fits the true data distribution while maximizing
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Fig. 2. Illustration of Adv-Ptr-Der-SUM architecture. For simplicity, we only depict 1-layer bidirectional LSTM as the encoder, and a 1-layer LSTM as the extractor,
as well as a 1-layer LSTM with de-redundancy mechanism as the decoder. The LSTM cell is redrawn from [53], and the Ptr-Net generator is regenerated from [106].
The summarizer consists of a variational model and a generative model. AM denotes attention mechanism. Symbol ⇒ is a start symbol for each video summary or
reconstructed sequence.
n

the probability of the discriminator making a mistake. To this
end, we formulate the learning process as the following minimax
optimization:

min
G

max
D
[Ex[log(Dis(x))] + Es[log(1− Dis(x̂))]], (4)

where x̂ = Gen(s), x∼px(x), s∼ps(s), p(s) is a prior. We train the
discriminator to maximize log(Dis(x)), and simultaneously train
the generator to minimize log(1 − Dis(x̂)) until the generator’s
distribution ps converges to the true data distribution px with
updated parameters ϕ.

3.1. Architecture of our model

In this subsection, we introduce the adversarial learning with
pointer network and de-redundancy mechanism (Adv-Ptr-Der-
SUM) in the framework of VAE. Inspired by the extractive text/
sentence summarization task in [74–76,106], we propose an Adv-
Ptr-Der-SUM model that uses a 2-layer bi-directional LSTM as
the encoder, a 2-layer LSTM pointer network as extractor, and
1-layer LSTM with de-redundancy mechanism as the decoder.
The Adv-Ptr-Der-SUM model for WCE video summarization is
a hybrid GAN model that consists of the summarizer (pointer
network) and the discriminator LSTM networks, as illustrated in
Fig. 2. The summarizer comprises two models: variational model
and generative model, aimed at providing a variable length com-
pact summary. The variational model (Encoder) is the variational
autoencoder LSTM architecture, aimed at performing a varia-
tional inference for the true posterior distribution of summaries
based on the observed video data. And the generative model (De-
coder/Generator) is the conditional generative distribution over

the latent vectors. The generator comprises the extractor and the

5

decoder and reconstructs source video data. The framework of
variational auto-encoder is close to the auto-encoding sentence
compression model [106] and pointer generator [75].

We formulate WCE video summarization as a sequence-to-
sequence learning problem. The input sequence is an original
video and the output sequence is its corresponding summary,
composed of the key frames. Given a video V of n frames, v =

{vi|i = 1, . . . , n}, each frame deep feature of the input video,
x = {xi|i = 1, . . . , n}, are extracted via a deep CNN model.
The summarizer uses a bidirectional LSTM encoder (eBi-LSTM)
to encode the sequence of selected frames to an extractor s, and
then a decoder LSTM (dLSTM) takes s as input, and reconstructs a
sequence of features, x̂ = {x̂i|i = 1, . . . , n}, corresponding to the
input video. p(s) is a prior which is typically set as the standard
normal distribution N (0, I). The encoder model is the inference
network qφ(s|x) that takes original video x as inputs and generates
extractive video frames s. The generator model is the generative
etwork pθ (x|s) that reconstructs x based on the extractive video

frames s. Hence, the forward pass starts from the encoder to the
extractor and ends at the decoder. The whole Adv-Ptr-Der-SUM
model assembles a summary by selecting a subset of important
frames from the original video.

We take [52] as our baseline, using a variational autoencoder
(VAE) and generative adversarial networks (GANs) to perform the
problem of WCE unsupervised video summarization. The key idea
is that a good summary should reconstruct original video seam-
lessly and adopt a GAN framework to reconstruct the original
video from summarized key frames. Different from [52] using a
selector LSTM to output frame-level important scores, we cancel
the selector, and directly adopt Ptr-Net as frame generator.
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3.2. Variational model

Referring to [52,59,107] and [73,75,106], for the variational
odel (Encoder) s∼qφ(s|x), we use a pointer network [73] con-

taining a bidirectional LSTM encoder that encodes the original
video x to a latent variable s, and an unidirectional LSTM extrac-
tor that generates the latent video frames by attending to the
encoded original video ones.

As illustrated in Fig. 2, the features of the frames xi, in the
riginal video are fed into the encoder, and producing a sequence
f encoder hidden states he

i . Assuming that sj are the features of
he frames in the extractor, and hs

j are the extractor hidden states.
he variational distribution is calculated as:

uj(i) = wT
3 tanh(W1he

i +W2hs
j ),

αj(i) = softmax(uj(i)),
qφ(sj|s1:j−1, x) = αj(i),

(5)

where φ= {w3,W1,W2} are learnable parameters, hs
0 is initialized

by the encoder last hidden state he
|x|. αj(i) indicates the proba-

bility of selecting xi as sj, and all the frames sj sampled from
qφ(sj|s1:j−1, x) are the subset of the frames appeared in the original
video (i.e., sj ∈ x). For example, α2(1) indicates that the pointer
selects the 2th frame x2 in the original video as the 1th frame s1
in the extractor, as shown in Fig. 2 (bottom).

3.3. Generative model

For the generative model (Decoder/Generator) x̂∼pθ (x|s),
pθ (x|s) is the conditional generative distribution over the latent
frames generated by the extractor. Assuming that x̂i are the
frames in the reconstructed video, hd

i are the decoder hidden
states, and ĥs

j are the extractor hidden states. The soft attention
model can be defined as:

βi(j) = wT
6 tanh(W4ĥs

j +W5hd
i ),

γi(j) = softmax(βi(j)),

ai =
|s|∑
j

γi(j)ĥs
j (βi(j)).

(6)

The generative distribution over reconstructed video is then cal-
culated as:

pθ (x̂i|x̂1:i−1, s) = softmax(W7ai), (7)

where θ= {w6,W4,W5,W7} are learnable parameters, hd
0 is initial-

ized by the extractor last hidden state ĥs . Note that here the

|s|

6

hidden state outputs ĥs
j in this model are different from hs

j in
the variational model, since the information from encoder hidden
states he

i is not involved. Thus, the parameters φ in the variational
model are not updated by the gradients from the generative
model.

3.4. Discriminator

The discriminator LSTM network learns to distinguish between
both true samples and generated ones, which is trained with
the generator in an adversarial learning manner. Following base-
line [52], we implement the discriminator using an energy-based
encoder–decoder [108] to minimize the representation error be-
tween the original video and video summarization. Similarly to
the GAN presented in [62], we have that Ptr-Net generator and
discriminator form the GAN framework. The GAN framework is
adversarially trained so as to maximally confuse the discriminator
when trying to distinguish the reconstructed videos from the
original ones. Practically, in this sense, the discriminator can be
viewed as a classifier estimating a distance between x and x̂, and
assigns a binary class labels to x (True) and x̂ (False).

3.5. De-redundancy mechanism

The redundancy is a distinct characteristic for video summa-
rization, especially WCE video summarization, for which elimi-
nating the redundant frames is much-need. The de-redundancy
mechanism is enlightened by the recent success of coverage
mechanism [72], which is applied to addressing the over-
translation and under-translation problem in neural machine
translation (NMT) [72], and solving the repetition problem in
text summarization [75], and thus we integrate it to WCE video
summarization. Our proposed de-redundancy mechanism mainly
aims to reduce the redundancy. To this end, we implement a
de-redundancy model for all inputs i at each decoder timestep
j by simply summing the attention distributions over all previous
decoder timesteps:

rj(i) =
j−1∑
j=0

αj−1(i). (8)

Apparently, rj(i) is a distribution representing the likelihoods of
he original video frames xi being selected from the attention
istributions. Note that r0(i) is initialized by a zero vector, which
s because on the first timestep, none of the original video frames
as been selected. The de-redundancy vector r (i) is fed into the
j
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Fig. 4. WCE-2019-Video dataset contains 30 videos using 5 categories (i.e., corresponding organ of digestive tract) including: Stomach, Duodenum, Jejunum, Ileum
and Colon. For the sake of using WCE-2019-Video dataset easily, based on the main component organs of digestive tract, approximate passage times of WCE through
corresponding organ [109], and physicians’ advice and guideline, we divided WCE-2019-Video into five parts as categories using name of corresponding organ. Each
part contains 6 patients’ corresponding video frames. As esophageal passage usually takes only seconds or a few minutes, this dataset does not involve the WCE
images of esophagus. Furthermore, since mean small bowel transit times is approximately 235–280 min (about 4–5 h), taking about 28,800 frames, this dataset
divides the whole small intestine into three parts: Duodenum, Jejunum, and Ileum so as to analyze and summarize WCE videos. Cat. axis represents category. Pat.
axis denotes patient ID.
r
L
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attention model (first equation) in composite Eq. (5), to help
adjust next attention, expressed as:

uj(i) = wT
3 tanh(W1he

i +W2hs
j+ωrj(i)), (9)

where ω is a learnable parameter. This ensures that the whole
summarization system can avoid repeatedly attending to the
same locations or a small neighbor centering at the ith original
frame, since the current decision of attention mechanism uj(i)
an be made by taking into account the past selected information
mbedded in uj−1(i), and thus avoid generating redundant frames.
To intuitively illustrate how the de-redundancy mechanism

liminates the redundancy, we take x = {x1, x2, x3, x4} as an
xample of input video frames and define a rule that consecutive
rames are more likely to be similar with each other. When the
ule is applied, we may produce a de-redundancy vector r =
1, 0, 0, 1} or r = {0, 1, 0, 1}. This means that frames x1 and
4 or x2 and x4 are selected and others are omitted so as to
chieve the purpose of deleting redundant frames. Other rules
uch as Determinantal Point Process (DPP) [53,80] for diversity
egularization can also be used.

As can be seen from the above procedure, our de-redundancy
echanism used to eliminate the redundant frames is different

rom other various diversity models also aimed at mitigating or
educing the redundancy in their summaries [53,80,110].

.6. Training loss

As illustrated in Fig. 3, we design the following loss functions
o train the Adv-Ptr-Der-SUM model: (1) generative loss LGen,
onsisting of a prior loss L and a reconstruction loss L ,
prior recon

7

both of which are used to train the VAE-based generator; (2)
adversarial loss LGAN; (3) de-redundancy loss LDer.

Generative Loss LGen. LGen contains a prior loss Lprior and a
econstruction loss Lrecon. As mentioned above, we use VAE-based
STM as the generator. The loss of the VAE-based generator is
ritten as:

Gen = DKL(q(s|x) ∥ p(s))− E[log(p(x|s))], (10)

where the first right hand side (RHS) term is the Kullback–Leibler
divergence for the prior loss,

Lprior=DKL(q(s|x) ∥ p(s)). (11)

The second RHS term is the reconstruction error for the recon-
struction loss Lrecon, which typically uses the Euclidean distance,x− x̂


2, between input and reconstructed output. However, the

recent findings [107] reveal the limitations of the simple element-
wise metric. So, this work [107] presents jointly training the
VAE and the GAN so as to use the hidden representations in the
GAN discriminator for measuring sample similarity. We also use
the same idea to measure the video distance. To this end, we
let Disl(x) denotes the hidden representation of the last hidden
layer of the discriminator, corresponding to the input of the
VAE, x. Therefore, we can replace the VAE reconstruction error
term with a following reconstruction error expressed in the GAN
discriminator:

Lrecon=− E[log(p(Disl(x)|s))], (12)

where expectation E is approximated as the empirical mean of
training examples. Following [52], in this paper, we consider
p(Dis (x)|s) ∝ exp(−

Dis (x)− Dis (x̂)
2). Variational parameters
l l l
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and generative parameters θ will be updated during learning.
For efficient learning that can differentiate and optimize the
variational lower bound (i.e., LGen), the reparameterization trick
n [59] of the LGen is used for stochastic gradient descent.

GAN Loss LGAN. As mentioned above, the GAN objective is to
rain the discriminator such that it can maximize the probability
aking a mistake and simultaneously encourage the generator to

it the true data distribution. Considering that using samples from
∼Enc(x)=q(s|x) may yield better results, we add a reconstructed
ignal to LGAN. According to Eq. (4), the final GAN loss LGAN is as:

LGAN=E[log(Dis(x))] + E[log(1− Dis(x̂p))]
+ E[log(1− Dis(x̂))],

(13)

where x̂p = Gen(sp) with sp∼p(sp), x̂∼Dec(s)=p(x|s), and x∼p(x).
Following [52], we use an energy-based GAN [108] to minimize
the representation error between the original video and video
summarization.

De-redundancy Loss LDer. Following [75], we define a de-
redundancy loss LDer to penalize repeatedly attending to the
same locations on each timestep j:

LDer=

j∑
j=0

min(αj(i), rj(i)). (14)

For video summarization, since it should not require uniform
distribution, we only penalize the overlap between each attention
distribution and the de-redundancy vector rj(i) so as to prevent
repeated attention.

Overall Loss L. We train the Adv-Ptr-Der-SUM model by using
the above three losses as the overall loss function:

L=LGen+LGAN+LDer. (15)

Note that since both decoder and generator map from s to x, θ
are the shared parameters between the two.

Training Adv-Ptr-Der-SUM. Similarly to the training proce-
dure of [52,107], we iteratively optimizes the above triple objec-
tives. We train our hybrid model using the overall loss function
L in Eq. (15). This is possible because not all network parameters
are updated with respect to the final loss L. Additionally, we
did not consider the relative importance of each loss, since we
hope that each loss can provide an equally important backprop-
agation signal. Thus, any hyper-parameter, balancing gradient
contributions to be updated parameters, did not be adopted in the
above triple criterion and final loss L. One can refer to Fig. 3 and
Algorithm 1 for the training procedure of our Adv-Ptr-Der-SUM
model for all parameters to be updated.

Given the above training losses LGAN, LGen, and LDer, we up-
date the parameters {φ, θ, ϕ, ω} in training using the Stochastic
Gradient Variational Bayes estimation [59]. Both VAE-based gen-
erator and GAN are jointly trained to maximally confuse the
discriminator.

4. Experiments

4.1. Datasets

WCE-2019-Video Dataset. Since there is yet no public bench-
mark dataset for our task, we collect a new WCE video summa-
rization dataset from the raw WCE videos supported by
Chongqing Jinshan Science & Technology (Group) Co., Ltd. We
name the dataset as WCE-2019-Video. Our built WCE-2019-Video
dataset contains 5 categories and 30 videos (6 per category from
6 patients) collected at the first phase of the task, and other
two videos (corresponding 2 categories from the seventh patient)

collected at the second phase, totaling 32 videos. Each video f

8

Algorithm 1: Training Adv-Ptr-Der-SUM model.

Input: Deep features of training video x
Output: Learned parameters for the Encoder φ, the

Decoder/Generator θ , the Discriminator ϕ, and the
De-redundancy Mechanism ω

1: Initialize all parameters {φ, θ, ϕ, ω}

2: repeat
3: for max number of iterations do
4: x← mini-batch frame features from CNN
5: s← eLSTM(x) % encoding, Ptr-Net selects frames
6: LDer ←

∑
min(α, r)

7: Lprior ← DKL(q(s|x)||p(s))
8: x̂← dLSTM(s) % decoding, reconstruction
9: Lrecon ← −E[log(p(Disl(x)|s))]

10: sp ← samples from a prior normal distribution sp∼
N (0, I)

11: x̂p ← dLSTM(sp) % reconstruction
12: LGAN ← E[log(Dis(x))] + E[log(1− Dis(x̂p))]

+E[log(1− Dis(x̂))]
13: % Updates Parameters using Stochastic Gradient
14: {ω, φ}

+
←− −∇(LDer+Lprior+Lrecon)

15: {θ}
+
←− −∇(Lrecon+LGAN) % θ are shared parameters

between Dec and GAN
16: {ϕ}

+
←− −∇(LGAN)

17: end for
18: until convergence of parameters, {φ, θ, ϕ, ω}

19: return φ, θ, ϕ, ω

varies from 600 to 7500 frames, with frame-level importance
scores. Fig. 4 shows thumbnails of the 30 videos and their corre-
sponding categories; Table 2 shows descriptive statistics. To our
knowledge, there are no publicly available implementations or
datasets which are used to evaluate WCE video summarization
so far. So, the dataset can serve as first dataset to validate WCE
video summarization techniques, and will be released after the
review process.

Similarly to the annotation protocol via crowdsourcing in TV-
Sum [57], the frame-level importance scores of each video within
WCE-2019-Video dataset are annotated by 6 experienced clini-
cians. Also, the annotation criteria refer to TVSum dataset: (1)ask-
ing each participant to watch the whole video and provide an
importance score to each frame from 1 (not important) to 5 (very
important); (2) avoiding chronological bias. Chronological bias
is the conception that humans tend to assign higher scores to
the shots that appear earlier in video, simply by virtue of their
temporal precedence, regardless of their actual visual quality or
representativeness. To this end, following [57],we use the same
method to obtain consistent scores for visually similar frames; (3)
with respect to regularizing score distributions, we use the same
method as [57] to regularize score distribution. For more details
of these methods, readers can refer to related literatures. A single
ground-truth summary is then computed by taking an average of
all the frame importance scores.

Two Public Multimedia Benchmarks: SumMe and TVSum.
umMe [56] consists of 25 videos ranging from 1.5 to 6.5 min and
rovide multiple user-annotated summaries (by 15–18 different
sers) for each video in the form of shot-level importance scores,
.e., video segments rather than keyframes. The dataset covers
ultiple events from both first-person and third-person camera,
uch as cooking and sports. Moreover, it provides a single ground-
ruth summary in the form of frame-level importance scores
calculated by averaging the key-fragment user summaries per

rame). TVSum [57] contains 50 videos collected from YouTube
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Table 2
Following [57], we give descriptive statistics of WCE-2019-Video dataset. #vid denotes the number of videos per category. #frm
shows the number of frames with corresponding category. P# represents the number of selected video frames of corresponding
patient ID. Percentage is the ratio of P# to the total number of video frames of each patient. The total number of video frames of
P1 to P7 patients are 28, 768, 35, 190, 41, 337, 34, 841, 24, 625, 59, 329, and 17,695, respectively.
Category Descriptive statistics

P1 P2 P3 P4 P5 P6 P7 #vid #frm

Stomach 2,950 1,631 2,420 2,758 2,896 2,328 1,510 7 14,983
Duodenum 921 832 830 975 845 621 – 6 5,024
Jejunum 3,000 3,250 4,630 3,950 1,573 3,609 2,405 7 20,012
Ileum 3,500 4,147 6,885 4,655 2,024 4,753 – 6 25,964
Colon 6,000 6,136 5,940 7,021 3,766 7,500 – 6 36,363

Total 16,371 15,996 20,705 19,359 11,104 18,811 3,915 32 102,346

Percentage (%) 56.9 45.5 50.1 55.6 45.1 31.7 22.1 – –
f

w

4

b
t
C
o

in 10 categories defined in the TRECVid Multimedia Event De-
tection (5 videos per category). The videos in this dataset vary
from 1 to 5 min and are annotated by 20 users in the form of
frame-level importance scores. Also, the dataset provides a single
ground-truth summary (computed by averaging all users’ scores).
Similarly to SumMe, TVSum also captures multiple visual styles
and events from both first-person and third-person camera, such
as grooming an animal and making sandwich.

For fair comparison, we evaluate our approach and related ap-
roaches using the single ground-truth summaries of each video
f all three datasets: WCE-2019-Video, SumMe and TVSum. The
ingle ground-truth summary is created by following the protocol
escribed in [53,57,111].

.2. Evaluation metric

For fair comparison with other state of the arts, we consider
-score used in [50–53,66,111,112] as an evaluation metric. Given
round-truth summary A and generated summary B, the precision

(P) and recall (R) are calculated based on the length of temporal
overlap between A and B as follows:

P =
A ∩ B
|B|

, R =
A ∩ B
|A|

, (16)

here A ∩ B denotes the length of temporal overlap between
hem, and |•| indicates the temporal duration of ground-truth
ummary A and generated summary B. The harmonic mean F-
core is then defined as:

=
2P× R
P+ R

× 100%. (17)

.3. Implementation details

Following the canonical learning settings [52] and [53], we
se 80% of given dataset as training set, and the remaining 20%
f it as testing set for evaluating our model. For a fair com-
arison with previous methods [52,53,56,57,66,67], for all the
hree datasets, namely, WCE-2019-Video, SumMe, and TVSum
ith multiple human-generated summaries, we use the similar
pproach [52,53,56,57,66,67] to create a single ground-truth set
or evaluation. Meanwhile, we conduct all experiments on five
ifferent random splits and report the average performance.
We train our Adv-Ptr-Der-SUM model on an Nvidia TitanXp

raphics card using Adam [113] optimizer whose learning rates
or discriminator and others are 1e-5 and 1e-4, respectively. We
mplement our approach using PyTorch [114]. Following the con-
ention [50–53,66,67,111,112], we extract 1024d deep features
s the descriptor of each video frame from the output of pool
layer of the GoogLeNet network [115] which is pre-trained

n ImageNet [116]. Also, we use a 2-layer bidirectional LSTM
s the encoder, and a 2-layer LSTM as the extractor, as well as
 v

9

Table 3
Performance comparison on F-scores (%) of the Adv-Ptr-Der-SUM model and
its ablation variants on WCE-2019-Video dataset. GAN, pointer network, and
de-redundancy mechanism can be simply on/off. The supervised variant is
implemented by adding the supervision signals of BCE loss to Adv-Ptr-Der-
SUM. Unsup. and Sup. denote the unsupervised variants and supervised variants,
respectively.
Setting Method WCE-2019-Video

Unsup.

Adv-Ptr-Der-SUMw/o-Ptr-Der (i.e., w/-Adv) 39.2
Adv-Ptr-Der-SUMw/o-Der (i.e., w/-Ptr-Adv) 42.1
Adv-Ptr-Der-SUMw/o-Ptr (i.e., w/-Der-Adv) 41.3
Adv-Ptr-Der-SUMw/o-Adv 38.5
Adv-Ptr-Der-SUM 44.6

Sup.

Adv-Ptr-Der-SUMw/o-Ptr-Der-sup 39.5
Adv-Ptr-Der-SUMw/o-Der-sup 42.5
Adv-Ptr-Der-SUMw/o-Ptr-sup 41.7
Adv-Ptr-Der-SUMsup 45.5

a 1-layer LSTM with de-redundancy mechanism as the decoder
in generator. We use 1024 hidden units at each layer in the
whole model. Similarly to [52], we initialize encoder, extractor,
and generator with the parameters of a pre-trained recurrent
autoencoder model trained on feature sequences from original
videos, which can accelerate convergence and improve the overall
accuracy.

All these settings above are used on all three datasets: WCE-
2019-Video, SumMe, and TVSum.

4.4. Baseline

We use the VAE and GAN network structure in [52] as baseline.
We choose unsupervised version of [52] to model a video. We
adopt same GAN loss but drop the basic sparsity loss. Addi-
tionally, following [52], we add a binary cross entropy (BCE)
loss signal between ground truth summarization positions gj
and predicted ones q(sj) for supervised learning. The objective is
ormalized as follows:

LBCE =−
1
|s|

|s|∑
j=1

gj log(q(sj))

+(1− gj) log(1− q(sj)),

(18)

here |s| is the length of output sequence.

.5. Ablation analysis

We conducted several ablation studies to analyze the contri-
ution of each component of the Adv-Ptr-Der-SUM model. Abla-
ion experiments are performed on our WCE-2019-Video dataset.
omparisons of ablation studies are shown by Table 3. Depending
n which training loss is adopted, we consider following ablation
ariants of Adv-Ptr-Der-SUM.
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Fig. 5. All the loss curves of Adv-Ptr-Der-SUM model. Horizontal axis denotes training epochs. Best viewed in color with zoom-in.
c
p
F

Adv-Ptr-Der-SUMw/-Adv. This variant indicates that the pointer
network and de-redundancy mechanism are not adopted. It is
used to verify the effects of adversarial learning to WCE video
summarization. When only adversarial learning is used to trained
Adv-Ptr-Der-SUM model, the model degenerates to a baseline
model [52] in which we may modify some parameters.

Adv-Ptr-Der-SUMw/o-Der. The variant denotes that the de-
redundancy mechanism is not used. It drops de-redundancy loss
LDer, and keeps two other training loss, which can be used to
analyze the summarization performance of de-redundancy mech-
anism. This case is similar to ASC [106], but note that the ASC
model does not use adversarial learning.
 t

10
Adv-Ptr-Der-SUMw/o-Ptr. In this case, the pointer network is
not adopted. But a selector of [52] is used to select key frames,
which means that training loss adopts Lrecon+Lprior+Lsparsity in
[52] instead of LGen. Meanwhile, LDer is kept. This variant is set
to verify the summarization performance of pointer network. This
case is equivalent to adding a de-redundancy signal to A-AVS [49].

Adv-Ptr-Der-SUMw/o-Adv. This variant indicates that LGAN is
not included, which is similar to the SUM-GANw/o-GAN in [52]. This
ase is set to show that the VAE and GAN can help to improve the
erformance of the model. It can be seen from Table 3 that the
-score value is the lowest in this case.
Adv-Ptr-Der-SUM. In this case, the overall loss function L is

he overall objective for training the Adv-Ptr-Der-SUM model in
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n unsupervised manner. As one can see, when all three losses
re applied to training simultaneously, the highest performance
an be obtained.
Adv-Ptr-Der-SUMsup. This case is specified for the super-

ised setting by adding Eq. (18) between ground-truth and pre-
icted, where ground-truth annotations of key frames are pro-
ided during training. Also, we give the other three variants of
his supervised learning: Adv-Ptr-Der-SUMw/o-Ptr-Der-sup, Adv-Ptr-
er-SUMw/o-Der-sup, and Adv-Ptr-Der-SUMw/o-Ptr-sup. These super-
ised variants are analogous to AALVS [66].
Comparing F-scores of Adv-Ptr-Der-SUMw/o-Der and Adv-Ptr-

er-SUMw/o-Ptr with Adv-Ptr-Der-SUMw/-Adv, it can be seen that
he performances of the Adv-Ptr-Der-SUM model with pointer
etwork and de-redundancy mechanism all outperform that of
he model merely having adversarial learning, i.e., the baseline
odel in [52] by 2.9% and 2.1%, respectively. This proves that
oth pointer network and de-redundancy mechanism can help to
mprove the summarization performance.

Also, we can see that Adv-Ptr-Der-SUMw/o-Der outperform Adv-
tr-Der-SUMw/o-Ptr by 0.8%, which means that pointer network
ay be more advantageous than de-redundancy mechanism over
CE video summarization. Furthermore, Adv-Ptr-Der-SUM has

he best performance in the unsupervised learning setting, ex-
eeding Adv-Ptr-Der-SUMw/-Adv by 5.4%, which shows that inte-
grating both pointer network and de-redundancy mechanism can
significantly improve summarization performance.

Additionally, as one can see, Adv-Ptr-Der-SUMw/-Adv outper-
forms Adv-Ptr-Der-SUMw/o-Adv by 0.7%, which can prove that this
model can benefit from the VAE and GAN learning.

By conducting the other four ablation studies in areas of su-
pervised learning, we can see that our supervised variant Adv-Ptr-
Der-SUMsup, outperforms all unsupervised approaches on WCE-
2019-Video dataset, as well as the other three supervised vari-
ants: Adv-Ptr-Der-SUMw/o-Ptr-Der-sup, Adv-Ptr-Der-SUMw/o-Der-sup,
nd Adv-Ptr-Der-SUMw/o-Ptr-sup. Adv-Ptr-Der-SUMsup beats Adv-
tr-Der-SUM by 0.9%, which demonstrates that annotated data
ith labels and additional learning signal can improve learning.
he other three experiments also verify the effects of different
omponents of corresponding variants.

.6. Analysis on loss curves

For the sake of space, here we report on only our training loss
urves in the proposed methods to WCE video summarization
n term of various relevant techniques. And simultaneously, we
lot these loss curves to show that the algorithm 1 can converge
oward a minimum as the network trains on the WCE-2019-Video
ataset. These loss curves include five loss functions: LDer, Lprior,
recon, and LGAN, as well as a final loss L with respect to the
nsupervised method: Adv-Ptr-Der-SUM.
It can be seen from Fig. 5 that the four loss functions: LDer,

prior, Lrecon, and LGAN make for a stable training, and LGAN con-
erges when the generator minimizes [log(1−Dis(x̂p))+ log(1−
is(x̂))]. Note that although the curves of LDer, Lrecon, and LGAN
eem to oscillate toward the minimum, the magnitudes of fluctu-
tion are small, which are almost not more than 0.01. We believe
hat the fluctuation is reasonable. Also, the overall loss L seems to
onverge smoothly, which shows that our model does not suffer
rom severe overfitting.

.7. Quantitative results

Comparison with other methods on WCE-2019-Video. Since
ur approach mainly aims to unsupervised learning, in this sub-
ection we first compare our unsupervised variant with the other

hree main unsupervised methods: SUM-GANdpp [52], Cycle-SUM 2

11
Table 4
Comparison on F-scores (%) of our unsupervised and supervised variants
with other unsupervised (Unsup.) and supervised (Sup.) approaches on our
WCE-2019-Video dataset, respectively.
Setting Method WCE-2019-Video

Unsup.

SUM-GANdpp [52] 38.9
Cycle-SUM [51] 42.1
SUM-GAN-AAE [67] 43.9
Adv-Ptr-Der-SUM 44.6

Sup.
dppLSTM [53] 36.2
AALVS [66] 44.3
Adv-Ptr-Der-SUMsup 45.5

Table 5
Comparison on F-scores (%) of our unsupervised variant with other un-
supervised approaches on SumMe and TVSum. Our approach outperforms
other existing methods except for CSNet and SUM-GAN-AAE which they
reported 51.3% and 56.9% on SumMe, and 58.8% and 63.9% on TVSum,
respectively.
Method SumMe TVSum

SUM-GANdpp [52] 39.1 51.7
DR-DSN [112] 41.4 57.6
CSNet [50] 51.3 58.8
Cycle-SUM [51] 41.9 57.6
SUM-GAN-AAE [67] 56.9 63.9
Adv-Ptr-Der-SUM 43.6 58.3

Table 6
Comparison on F-scores (%) of our supervised variant with other supervised
approaches on SumMe and TVSum. This variant performs the best on
TVSum, and merely slightly lower than CSNet on SumMe.
Method SumMe TVSum

dppLSTM [53] 38.6 54.7
SUM-GANsup [52] 41.7 56.3
DR-DSNsup [112] 42.1 58.1
CSNetsup [50] 48.6 58.5
A-AVS [49] 43.9 59.4
AALVS [66] 46.2 63.6
Adv-Ptr-Der-SUMsup 47.7 64.5

[51] and SUM-GAN-AAE [67] on WCE-2019-Video dataset, and
give a concise description for this comparison. Additionally, we
also compare our supervised variant with the supervised meth-
ods: dppLSTM [53] and AALVS [66] on our dataset. These results
are shown in Table 4.

Since we could not find the authors’ implementation, we re-
implemented the other two main unsupervised methods: SUM-
GANdpp [52] and Cycle-SUM [51] in PyTorch where SUM-GANdpp
is reproduced based on the PyTorch Implementation of SUM-
GAN.1 Also, the code of SUM-GAN-AAE [67] is publicly available.2

All three methods use the same settings from their published pa-
pers. The results of comparison on WCE-2019-Video between our
Adv-Ptr-Der-SUM and two other methods are shown in Table 4.
One can see that the summarization performance of Adv-Ptr-
Der-SUM is the best with respect to other three unsupervised
methods, which outperforms SUM-GANdpp, Cycle-SUM, and SUM-
GAN-AAE by 5.7%, 2.7%, and 0.7% respectively. This demonstrates
a huge advantage of unsupervised variant of our approach over
existing techniques.

Also, we evaluate the existing supervised technique: dppLSTM
[53] and AALVS [66] using WCE-2019-Video. The codes of both

1 https://github.com/j-min/Adversarial_Video_Summary, (last accessed on
eb. 20, 2019).
2 https://github.com/e-apostolidis/SUM-GAN-AAE, (last accessed on Jan. 19,
020).

https://github.com/j-min/Adversarial_Video_Summary
https://github.com/e-apostolidis/SUM-GAN-AAE
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Fig. 6. Example summaries generated by our unsupervised and supervised variants from a sample video in WCE-2019-Video. The blue bars show the annotation
importance scores. The colored segments correspond to the selected parts using different methods.
Fig. 7. Exemplar video summaries by other methods. Example summaries from a sample video 31 in WCE-2019-Video. The blue bars show the annotation importance
scores. The colored segments are the selected subsets using the specified methods.
are publicly accessible3 ,4. The comparisons in Table 4, between
dppLSTM, AALVS, and Adv-Ptr-Der-SUMsup, show that supervised
ariant of our approach significantly outperforms dppLSTM by
.3%. We believe that outstanding performance is mainly because

3 https://github.com/kezhang-cs/Video-Summarization-with-LSTM, (last ac-
essed on Apr. 10, 2018).
4 https://github.com/tsujuifu/pytorch_vsum-ptr-gan, (last accessed on Mar.
1, 2019).
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the pointer network and de-redundancy mechanism can help to
produce a good summary, which provide more similar content
representation as of the original frame sequences. Furthermore,
this variant beats AALVS by 1.2%, which indicates the model may
benefit from de-redundancy mechanism and pointer network by
different ways.

Comparison with unsupervised approaches on public
benchmarks. For fair comparison with other methods and show-
ing the generality of our models, we evaluate the Adv-Ptr-Der-
SUM model on two public benchmark datasets: SumMe [56]

https://github.com/kezhang-cs/Video-Summarization-with-LSTM
https://github.com/tsujuifu/pytorch_vsum-ptr-gan
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Fig. 8. Comparisons of exemplar video summaries by Adv-Ptr-Der-SUM and other methods in the supervised and unsupervised manners. The exemplar video is from
VSum [57]. The blue bars show the ground-truth importance scores. The orange bars are selected subsets of all frames.
nd TVSum [57], to verify its effectiveness on user multimedia
ideo summarization. We tentatively empirically conduct a set of
xperiments and compare our method with other unsupervised
pproaches. The results of comparison are presented in Table 5.
Table 5 shows the experimental results of Adv-Ptr-Der-SUM

gainst other unsupervised approaches on SumMe and TVSum. As
ne can see, Adv-Ptr-Der-SUM outperforms most of the existing
nsupervised approaches except for CSNet [50] and SUM-GAN-
AE [67] on both datasets by large margins. The performance
mprove by 1.7% and 0.7% over the third best results, i.e., Cycle-
UM [51] on SumMe and TVSum, respectively. This clearly shows
he effectiveness of our proposed approach and well proves that
t can be applied to the user multimedia video summarization.

The experimental results show that (1) compared to most of
he existing unsupervised approaches except CSNet and SUM-
AN-AAE, our method performs the best on both two datasets.
e believe that this is because GAN can be used to unsuper-

ised learning and help to improve the performance; (2) de-
edundancy mechanism can reduce the redundancy and highlight
iversity information, which may be highly related to the key
hots or frames to be selected; (3) in contrast to other tech-
iques, pointer network may more effectively address the issues
f variable-range structural dependencies.
Additionally, it can be seen from Tables 4 and 5 that the per-

ormance of both SUM-GAN-AAE and Adv-Ptr-Der-SUM on WCE-
019-Video dataset may fall out of step with of both them on two
ublic benchmarks. We believe because it may be that there are
ifferent characteristics between both datasets, resulting in dif-
erent feature representations. Furthermore, the de-redundancy
echanism of Adv-Ptr-Der-SUM is originally intended to elimi-
ate the redundancy in WCE videos, which may be more suitable
or WCE, rather than user multimedia videos.

Comparison with supervised approaches on public bench-
arks. Similarly, for fairness and showing generality, we eval-
ate the supervised model on two public benchmarks: SumMe

56] and TVSum [57]. The results are presented in Table 6. As

13
shown in Table 6, it can be seen that the performance of Adv-Ptr-
Der-SUMsup is better than other existing supervised approaches,
and is even superior than the supervised approach in [66] on
TVSum (64.5 vs. 63.6). Also, Adv-Ptr-Der-SUMsup outperforms the
mentioned supervised approach except for CSNet [50] on SumMe,
which performs slightly better than our approach.

To the best of our knowledge, all existing methods exclud-
ing CSNet show that almost all supervised techniques can bet-
ter improve performance than unsupervised approaches. This
experimental result can be consistent with the prior point of
view.

4.8. Qualitative results

In this subsection, we first provide qualitative results to better
illustrate how well the variations of Adv-Ptr-Der-SUM has se-
lected WCE key frames. Second, we compare our approach with
other recent unsupervised methods: SUM-GANdpp [52], Cycle-
SUM [51], and SUM-GAN-AAE [67], as well as supervised dp-
pLSTM [53] and AALVS [66]. The two qualitative results are an-
alyzed on our WCE-2019-Video dataset. Finally, we give an ex-
ample of comparison results between our approach and other
methods on public user video dataset: TVSum.

Fig. 6 shows the selected frames by different variations of
our approach on an example video in WCE-2019-Video. The
blue background represents the ground-truth importance scores,
while the colored regions are the selected subsets by different
methods. The illustrations of different variants support the results
presented in Table 3.

Fig. 7 demonstrates summarization examples from a sample
video #31 in WCE-2019-Video, which generated by the methods
including supervised and unsupervised: SUM-GANdpp, Cycle-SUM,
and SUM-GAN-AAE, as well as dppLSTM and AALVS. As shown in
Figs. 6 and 7, all unsupervised and supervised versions of Adv-
Ptr-Der-SUM selects shorter but more key frames with non- or

less-redundancy than the other five corresponding models, which
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ean that they have higher F-scores than the above-mentioned
ethods.
In order to verify the effectiveness of our approach on user

ultimedia video summarization, we conduct several qualitative
xperiments on video #15 of TVSum [57] dataset by using our
pproach and others. The comparisons of the results are shown
n Fig. 8. It can be seen from Fig. 8 that our approaches including
upervised and unsupervised have a relatively high scores on
ideo #15 of TVSum.

. Conclusion

In this paper, we propose an unsupervised WCE video summa-
ization method termed Adv-Ptr-Der-SUM for frame-level WCE
ideo summarization by integrating long short-term memory
LSTM), variational autoencoder (VAE), generative adversarial net-
ork (GAN), pointer network (Ptr-Net), and de-redundancy mech-
nism (DM) etc. techniques. Extensive experiments on our WCE-
019-Video dataset and two public multimedia benchmarks:
umMe and TVSum, show that our approach can achieve a com-
etitive result on both WCE and user video summarizations in
he unsupervised and supervised settings, which well verifies the
ffectiveness of Adv-Ptr-Der-SUM model. Concretely, using the
dv-Ptr-Der-SUMmodel, we achieve F-scores of 44.6%, 43.6%, and
8.3% on WCE-2019-Video, two benchmarks: SumMe and TVSum,
espectively. Also, using the supervised variant of Adv-Ptr-Der-
UM model, we can achieve F-scores of 45.5%, 47.3%, and 64.5%
n the above-mentioned three datasets, respectively.
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